
2007 JavaOneSM Conference   |   Session TS-1130   | 

TS-1130

JFugue:
Making Music With Java MIDI 
and Illustrating API Usability
David Koelle
Senior Software Engineer
Charles River Analytics Inc
http://www.cra.com
http://www.jfugue.org

Geertjan Wielenga
Technical Writer
NetBeans
http://www.netbeans.org
http://blogs.sun.com/geertjan



2007 JavaOneSM Conference   |   Session TS-1130   | 2

Goal 

Learn about JFugue, an API for creating 
MIDI music, and learn how an easy-to-use 
API can make your projects successful.

What we hope you’ll take away



2007 JavaOneSM Conference   |   Session TS-1130   | 3

Agenda

Explore JFugue
Enjoy Demos!
Create JFugue Clients
Examine API Usability



2007 JavaOneSM Conference   |   Session TS-1130   | 4

Agenda

Explore JFugue
Enjoy Demos!
Create JFugue Clients
Examine API Usability



2007 JavaOneSM Conference   |   Session TS-1130   | 5

What Is JFugue?

• An API for Programming Music in Java™ 
programming language

• Renders music in Java™ platform MIDI
• … extensible to other formats (more later)

• Intended for multiple purposes
• Define and play music at runtime
• Experiment with changing and editing music
• Inspire future programmers

• Without JFugue, programming music is hard!



2007 JavaOneSM Conference   |   Session TS-1130   | 6

Programming Music
With Java Platform MIDI
// Play a Middle-C
Sequencer sequencer = MidiSystem.getSequencer();
Sequence sequence = sequencer.getSequence();
Track track = sequence.createTrack();
ShortMessage onMessage = new ShortMessage();
onMessage.setMessage(ShortMessage.NOTE_ON, 0, 60, 128);
MidiEvent noteOnEvent = new MidiEvent(onMessage, 0);
track.add(noteOnEvent);
ShortMessage offMessage = new ShortMessage();
offMessage.setMessage(ShortMessage.NOTE_OFF, 0, 60, 128);
MidiEvent noteOffEvent = new MidiEvent(offMessage, 200);
track.add(noteOffEvent);
sequencer.start();
try {
    Thread.sleep(track.ticks());
} catch (InterruptedException e) {
    Thread.currentThread().interrupt();
}



2007 JavaOneSM Conference   |   Session TS-1130   | 7

Programming Music With JFugue
// Play a Middle-C
Player player = new Player();
player.play(“C”);



2007 JavaOneSM Conference   |   Session TS-1130   | 8

Programming Music With JFugue
// Play first 2 measures (and a bit) of “Für Elise”
Player player = new Player();
player.play(“E6s D#6s | E6s D#6s E6s B5s D6s C6s | A5i.”);



2007 JavaOneSM Conference   |   Session TS-1130   | 9

Why JFugue makes music programming fun
The Magic of JFugue

• Simple and intuitive API—player.play()
• Innovative “Music String”

• Seems to break object-oriented paradigm, but…
• More convenient for specifying many notes

song.add(new Note(Note.A_SHARP,6, Note.QUARTER)); 
vs. 

play(“A#6q”);
• Easy to specify all sorts of musical events

● Notes, Durations, Instruments, Voices, Controller Events…
● If it makes a sound in MIDI, you can represent it in JFugue



2007 JavaOneSM Conference   |   Session TS-1130   | 10

More Fun With the Music String

• Voices and Instruments

V0 I[Alto_Sax] E5s G5s C6s G5s 
V1 I[Piano] D4s F4s C4s D4s



2007 JavaOneSM Conference   |   Session TS-1130   | 11

More Fun With the Music String

• Chords

Cmajq Dsus4w Bbmin13q



2007 JavaOneSM Conference   |   Session TS-1130   | 12

More Fun With the Music String

• Key Signatures

kGbmaj G5i A5i Bn5i

The G and A are automatically played as flats,
the B has been declared natural



2007 JavaOneSM Conference   |   Session TS-1130   | 13

More Fun With the Music String

• Constants let you specify substitution values
• To define: $word=definition
• To use: [word]

• Example:
• “$base=C [base]4q [base]majw”
• Actually plays “C4q Cmajw”
• Want to change all C notes to E?  Just change $base

• Instrument substitution: “$myFave=Piano I[myFave] 
C6q D6q”



2007 JavaOneSM Conference   |   Session TS-1130   | 14

More Fun With the Music String

• Pitch Bend
• Channel Pressure
• Polyphonic Pressure
• MIDI Controllers



2007 JavaOneSM Conference   |   Session TS-1130   | 15

Programming Music With JFugue
GrammarRewriter generator = new GrammarRewriter();
generator.setAxiom("T120 V0 I[Flute] Rq C5q " +
"V1 I[Tubular_Bells] Rq Rq Rq G6i+D6i V2 I[Piano] Cmajw E6q "+ "V3 
I[Voice] E6q G6i+D6i V4 I[Choir] C5q E6q");
generator.addTransform("Cmajw", "Cmajw Fmajw"); 
generator.addTransform("Fmajw", "Rw Emajw"); 
generator.addTransform("Emajw", "Rw Fmajw"); 
generator.addTransform("C5q", "C5q G5q E6q C6q"); 
generator.addTransform("E6q", "G6q D6q F6i C6i D6q"); 
generator.addTransform("G6i+D6i", "Rq Rq G6i+D6i G6i+D6i Rq"); 
String music = generator.generate(3);
Pattern pattern = new Pattern(music);
Player player = new Player();
player.play(pattern);



2007 JavaOneSM Conference   |   Session TS-1130   | 16

How JFugue enables musical experimentation
What If You Could Manipulate Music?

• A Pattern is a fragment of music
• Patterns can be twisted, pulled, contorted…

• PatternTransformer 
• Examples:

● Duration Pattern Transformer
• Bach wrote a song using a melody that was reversed 

and played on top of itself—The Crab Canon
• Reverse Pattern Transformer

• PatternTransformers listen to the JFugue parser 
and create alternate patterns



2007 JavaOneSM Conference   |   Session TS-1130   | 17

Anonymous PatternTransfomer
// Lower the octave of each note in a pattern
// (Number of notes in one octave = 12)
PatternTransformer octaveChanger = new PatternTransformer() {
    public void noteEvent(Note note) {
        byte currentValue = note.getValue();
        if (currentValue > 12) {
            note.setValue((byte)(currentValue - 12));
            returnPattern.addElement(note);
        }  
    }
};
Pattern octaveLowerSong = octaveChanger.transform(song);



2007 JavaOneSM Conference   |   Session TS-1130   | 18

More amazing things you can do in JFugue
What Else Is Cool?

• Microtonal music
• JFugue automatically adjusts pitch bend to 

change/make microtonal adjustments
• Rhythms

• JFugue lets you bang on your keyboard like a set
of drums

• Follow along with or anticipate MIDI events
• You’ll see this in the demo!



2007 JavaOneSM Conference   |   Session TS-1130   | 19

Microtones in JFugue
MicrotoneHelper microtone = new MicrotoneHelper();
microtone.put(“Be", 400.00);
microtone.put(“Bf", 405.50);
microtone.put(“Bt", 415.67);
microtone.put(“Bv", 429.54);
        
Pattern p = new Pattern("[Be]q [Bf]q [Bt]q [Bv]q");
new Player().play(microtone.convertPattern(p));



2007 JavaOneSM Conference   |   Session TS-1130   | 20

Rhythms in JFugue
Rhythm rhythm = new Rhythm();
rhythm.addSubstitution('O', "[ACOUSTIC_BASS_DRUM]s");
rhythm.addSubstitution('o', "[ACOUSTIC_SNARE]s");
rhythm.addSubstitution('\'', "[CLOSED_HI_HAT]s");
rhythm.addSubstitution('`', "[OPEN_HI_HAT]s");
rhythm.addSubstitution('.', "Rs");
rhythm.setLayer(1, "O.OO...O.OO....O");
rhythm.setLayer(2, "....o.......o...");
rhythm.setLayer(3, "'.`.'.`.'.`.'.`.");
Pattern pattern = rhythm.getPattern();
pattern.repeat(4);
        
Player player = new Player();
player.play(pattern);



2007 JavaOneSM Conference   |   Session TS-1130   | 21

Interact with MIDI keyboard and synthesizers
JFugue and MIDI Devices

• Send music to an external device
• Listen to music from an external device



2007 JavaOneSM Conference   |   Session TS-1130   | 22

Sending Music to a MIDI Device
// Send music to keyboard – without JFugue
MidiDevice.Info[] info = MidiSystem.getMidiDeviceInfo();
// Need to figure out which info[] to use – more lines, need user input!
MidiDevice device = MidiSystem.getMidiDevice(info[x]);
if (!(device.isOpen())) {
 device.open();
}
Receiver receiver = device.getReceiver();
Sequence sequence = MidiSystem.getSequence(midifile);
// Sort all of the MidiEvents in sequence by time – 30/40 more lines 
MidiEvent[] events = // sequence sorted by time
// Dole out event messages according to elapsed time
long elapsedTime = 0;
for (int i = 0; i < events.length; i++) {
  MidiEvent event = events[i];
  MidiMessage message = event.getMessage();
  long timestamp = event.getTick();
  long deltaTime = timestamp - elapsedTime;
  elapsedTime = timestamp;
  try {
    // Need to figure out tempoFactor – another 10 lines!
    Thread.sleep((int)(deltaTime * tempoFactor));
  } catch (InterruptedException ex) { 
    Thread.currentThread().interrupt();
  }
}
receiver.send(message, -1);
receiver.close();
device.close();

Don’t worry, 
you’re not supposed 
to be able to read 

this.



2007 JavaOneSM Conference   |   Session TS-1130   | 23

Sending Music to a MIDI Device
// Send music to keyboard – with JFugue
try 
{

MidiOutDevice device = new MidiOutDevice();
sequence = MidiSystem.getSequence(midifile); 

   // OR: sequence = player.getSequence(pattern);
 device.sendSequence(sequence);
} 
catch (MidiUnavailableException e) { /* handle this */ }
catch (InvalidMidiDataException e) { /* handle this */ }
catch (IOException e) {/* handle this */ }



2007 JavaOneSM Conference   |   Session TS-1130   | 24

Reading and writing to limitless formats
Parsers and Renderers

• JFugue has a clear architectural design
• Parsers convert some format into musical events
• Renderers turn musical events into something 

meaningful
• Examples

• Parsers: MusicStringParser, MidiParser
• Renderers: MidiRenderer, MusicStringRenderer



2007 JavaOneSM Conference   |   Session TS-1130   | 25

Parsers and Renderers in JFugue
// General Example
XxxxParser parser = new XxxxParser();
XxxxRenderer renderer = new XxxxRenderer();
parser.addParserListener(renderer);
parser.parse(whatever object the parser can parse);



2007 JavaOneSM Conference   |   Session TS-1130   | 26

Parsers and Renderers in JFugue
// Specific: Convert MIDI into a JFugue MusicString
MidiParser parser = new MidiParser();
MusicStringRenderer renderer = new MusicStringRenderer();
parser.addParserListener(renderer);
parser.parse(MidiSystem.getSequence(file));

// Wishlist: Convert MusicXML Format into Sheet Music
// (neither parser/renderer currently exists)
MusicXmlParser parser = new MusicXmlParser();
SheetMusicRenderer renderer = new SheetMusicRenderer();
parser.addParserListener(renderer);
parser.parse(new File(“music.xml”));



2007 JavaOneSM Conference   |   Session TS-1130   | 27

Agenda

Explore JFugue
Enjoy Demos!
Create JFugue Clients
Examine API Usability



282007 JavaOneSM Conference   |   Session TS-1130   | 

DEMO
Seeing (or Hearing) JFugue in Action



2007 JavaOneSM Conference   |   Session TS-1130   | 29

Agenda

Explore JFugue
Enjoy Demos!
Create JFugue Clients
Examine API Usability



2007 JavaOneSM Conference   |   Session TS-1130   | 30

…so a client only needs to provide a user interface
JFugue Provides Functionality…

• To generate JFugue music strings
• To invoke the playing of JFugue music strings
• To invoke the saving of JFugue music strings
• To invoke the loading of MIDI files



2007 JavaOneSM Conference   |   Session TS-1130   | 31

Open Sourced JFugue Music Notepad



322007 JavaOneSM Conference   |   Session TS-1130   | 

DEMO
JFugue Music NotePad
https://nbjfuguesupport.dev.java.net/



2007 JavaOneSM Conference   |   Session TS-1130   | 33

Agenda

Explore JFugue
Enjoy Demos!
Create JFugue Clients
Examine API Usability



2007 JavaOneSM Conference   |   Session TS-1130   | 34

What Is API Usability?

• Designing an interface for the user
• Like usability design for graphical interfaces…
•      …but the users are other developers…
•           …so it’s easy to relate!

• “Interface” = your API
• “User” = other developers 

• API Usability is the intersection of user-centered 
design and excellent coding practices



2007 JavaOneSM Conference   |   Session TS-1130   | 35

API Usability Tips

• Start with the end in mind
• Think to yourself: What do I want to accomplish?

• Develop examples as you develop your API
• Example: JFugue’s Rhythm class

Rhythm rhythm = new Rhythm();
rhythm.addSubstitution('O', "[ACOUSTIC_SNARE]q");
rhythm.setLayer(1, "oo'O' oo'O' oo'O' oo'O' “); 
Player player = new Player(); 
player.play(rhythm);

…illustrated through JFugue



2007 JavaOneSM Conference   |   Session TS-1130   | 36

API Usability Tips

• Make conceptually easy things simple to do
• Player player = new Player();
• player.play(“musical notes”);

• Create a compact API
• Require the user to type as few lines as possible

• song.add(pattern, 2);  // Add the pattern twice
• Don’t flood the API with unnecessary methods

• Player had a “allNotesOff” method… thought I needed it, 
I was wrong

…illustrated through JFugue



2007 JavaOneSM Conference   |   Session TS-1130   | 37

API Usability Tips

• Be absolutely correct
• If people are relying on your API, it must work!
• Be available for comments and bugs

• Construct complete objects only
• Don’t rely on methods that the user must call after the 

construct your object…because they won’t
• Catch errors right away
• Be verbose in reporting errors

• Exception in thread “main” org.jfugue.JFugueException: The 
word DBF has no definition; Check the spelling, or define 
the word before using it

…illustrated through JFugue



2007 JavaOneSM Conference   |   Session TS-1130   | 38

API Usability Tips

• Follow Joshua Bloch’s “Effective Java”

• Tips for evolving APIs
• Once you release an API, people will rely on it
• If you change the API, change the major version 

number of your release
• Provide documentation for converting between 

versions

• Finally: The success of your API project also 
depends on your presentation
• Webpage, communications, etc.

…illustrated through JFugue



2007 JavaOneSM Conference   |   Session TS-1130   | 39

Summary

• JFugue lets you do wonderful things with music
• JFugue Music NotePad lets you build music 

graphically, and turn it into JFugue strings
• A usable API is important towards getting a 

programming library adopted and enjoyed



2007 JavaOneSM Conference   |   Session TS-1130   | 40

For More Information

• Java platform and music
• Paul Lamere’s “Search Inside the Music”, TS-1548

• JFugue 
• JFugue—http://www.jfugue.org
• The Complete Guide to JFugue

• Music NotePad
• Music Notepad—https://nbjfuguesupport.dev.java.net
• Geertjan’s blog—http://blogs.sun.com/geertjan

• API usability
• Joshua Bloch’s Effective Java session and book
• Dave Koelle’s website–http://www.DaveKoelle.com



412007 JavaOneSM Conference   |   Session TS-1130   | 

Q&A
David Koelle
Geertjan Wielenga



2007 JavaOneSM Conference   |   Session TS-1130   | 

TS-1130

JFugue:
Making Music With Java MIDI 
and Illustrating API Usability
David Koelle
Senior Software Engineer
Charles River Analytics Inc
http://www.cra.com
http://www.jfugue.org

Geertjan Wielenga
Technical Writer
NetBeans
http://www.netbeans.org
http://blogs.sun.com/geertjan


