
User Interface Principles in
API Design

Elliotte Rusty Harold
elharo@metalab.unc.edu

http://www.cafeaulait.org/

““API usability is the intersectionAPI usability is the intersection
of user-centered design andof user-centered design and
excellent coding practicesexcellent coding practices””

 --David Koelle & Geertjan Wielenga

Programmers Are People TooProgrammers Are People Too

 Eat Like Humans
 Sleep Like Humans
 Think Like Humans

User Interface Design is aUser Interface Design is a
ScienceScience
 Based on hypothesis, observation

and experiment
 Well-proven, well-tested theories

Fundamental PrinciplesFundamental Principles

 Consistency is next to godliness
 Simpler is better
 Visible complexity is bad
 Smaller equals easier to use

LibrariesLibraries vs vs. Applications. Applications

 Applications are monolithic
 Only other programmers on the

same team use an application’s API
 Libraries can make very limited

assumptions about how, when,
where, and why API will be invoked

 Boundary is fuzzy

Remember the Remember the PeoplePeople

 Why you need an API
 Who uses the API
 Who designs the API

Focus on the Focus on the UserUser

 Ask what the user wants to do with your
API

 Do not ask what the internal data
structures and algorithms look like

 High level API is better than lower level--
Reduce the number of method calls
needed to accomplish the task

 Design from the outside in
 Start with the end in mind

What to put in an APIWhat to put in an API
 Write sample programs first; Sample-first

programming
 80/20 rule
 Maximal vs. Minimal APIs
 YAGNI
 When in doubt, leave it out!
 Why I’m a conservative

DependenciesDependencies

 Platform version
 Library dependencies
 Built-in vs. 3rd party libraries

Data EncapsulationData Encapsulation

 Public vs. Published
 Fields are private
 Methods are mostly private
 Methods are atomic
 Constructors and destructors
 Communicating with the user

ConstraintsConstraints

 APIs must enforce domain validity
 Preconditions
 Postconditions
 Class invariants
 System invariants
 Construct complete objects only

(Builder pattern)

Error HandlingError Handling

 Specify what happens on bad input
as well as good

 Important for security
 No undefined behavior
 Don’t silently swallow exceptions
 Error messages should be verbose

but clear
 Don’t warn the user

Naming ConventionsNaming Conventions

 Review naming conventions
 Use standard terminology
 Do not abbreviate
 Use domain specific vocabulary
 Consistent terminology: always use

the same word for the same idea
– e.g. add vs. append

 Do not use two words for one idea

Avoid ComplexityAvoid Complexity

 Prefer classes to interfaces
 Prefer constructors to factory

methods
 Avoid excessive abstraction
 You usually don’t need multiple

implementations
 Refactor to patterns; don’t start with

them. Avoid pattern overload!

InheritanceInheritance

 Prefer finality
– (at least on methods)

 Factories and interfaces
 The proper use of protected

Plays well with others (Java):Plays well with others (Java):

 Serializable
 Cloneable(*)
 Comparable
 equals()
 hashCode()
 toString()
 Exception handling
 Thread safety

Plays well with others (.NET):Plays well with others (.NET):

 Equals() / GetHashCode()
 ToString()
 IEquatable<T> / IComparable<T>
 “Collection” suffix for IEnumerable

classes
 Icloneable*
 Override ==, etc. for value types (only)
 No pointer arguments to public methods
 Don’t throw exceptions from overloaded

operators and implicit casts

TestabilityTestability

 The API itself
 Client code that uses the API
 This is a secondary concern

DocumentationDocumentation

 Specification
 Quick Start
 Tutorials
 Example code
 API Documentation
 Per method checklist

Conformance TestingConformance Testing

 Specifications
 Test Suites
 Implementation dependent behavior
 Implementation dependent

extensions

MaintenanceMaintenance

 Planning for the future
 Forwards compatibility
 Backwards compatibility
 Unexpected limits
 Deprecation
 Breaking compatibility
 Interfaces vs. classes

The Last Concern (Performance)The Last Concern (Performance)

 Speed
 Size
 Energy

Case Study: Case Study: JMidi vsJMidi vs. . JFugueJFugue

JMidiJMidi: Play Middle-C: Play Middle-C
Sequencer sequencer = MidiSystem.getSequencer();
Sequence sequence = sequencer.getSequence();
Track track = sequence.createTrack();
ShortMessage onMessage = new ShortMessage();
onMessage.setMessage(ShortMessage.NOTE_ON, 0, 60, 128);
MidiEvent noteOnEvent = new MidiEvent(onMessage, 0);
track.add(noteOnEvent);
ShortMessage offMessage = new ShortMessage();
offMessage.setMessage(ShortMessage.NOTE_OFF, 0, 60, 128);
MidiEvent noteOffEvent = new MidiEvent(offMessage, 200);
track.add(noteOffEvent);
sequencer.start();
try {
 Thread.sleep(track.ticks());
} catch (InterruptedException e) {
 Thread.currentThread().interrupt();
} // courtesy of David Koelle

JFugueJFugue: Play Middle C: Play Middle C
Player player = new Player();
player.play("C");

// Play first 2 measures (and a bit) of “Für Elise”
player.play("E6s D#6s | E6s D#6s E6s B5s D6s C6s | A5i.");
// courtesy David Koelle

Lessons LearnedLessons Learned

 Domain Specific Language
– Takes advantage of domain specific

knowledge
– Easier to write; easier to read
– Java is not the right notation for all use cases

(nor is XML, nor Ruby, nor JSON, nor SQL,
nor…)

 Focus on what the client wants to do; not
how the software does it

 Avoid Abstract Factory; don’t catch
“patternitis”

Case Study: Java MessageCase Study: Java Message
ServiceService
 To put a message on queue:
String queueName = null;
Context jndiContext = null;
QueueConnectionFactory queueConnectionFactory = null;
QueueConnection queueConnection = null;
QueueSession queueSession = null;
Queue queue = null;
QueueSender queueSender = null;
TextMessage message = null;
final int NUM_MSGS;
queueName = new String(args[0]);
try {
 jndiContext = new InitialContext();
} catch (NamingException e) {
 System.exit(1);
}

ContinuedContinued
try {
 queueConnectionFactory = (QueueConnectionFactory)
 jndiContext.lookup("QueueConnectionFactory");
 queue = (Queue) jndiContext.lookup(queueName);
} catch (NamingException e) {
 System.exit(1);
}
try {
 queueConnection =

queueConnectionFactory.createQueueConnection();
 queueSession =

queueConnection.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 queueSender = queueSession.createSender(queue);
 message = queueSession.createTextMessage();
 message.setText("This is message 1");
 queueSender.send(message);
 }
}

FinallyFinally
finally {
 if (queueConnection != null) {
 try {
 queueConnection.close();
 } catch (JMSException e) {}
 }
}

What should this look like?What should this look like?
try {
 Queue q = new Queue("jms://example.com/message");
 q.send("First message");
 q.send("Second message");
} catch (JMSException ex) {
 System.err.println(ex);
}

Case Study: Case Study: BoxLayout vsBoxLayout vs..
GridBagLayoutGridBagLayout

Gridbag Gridbag CalculatorCalculator

BoxLayout BoxLayout CalculatorCalculator

Lessons LearnedLessons Learned

 Follow naming conventions
 Focus on what the user wants to do;

not the internal data model and
algorithms

Further ReadingFurther Reading

 Effective Java: Joshua Bloch
 Effective C#: Bill Wagner
 Framework Design Guidelines:

Krzysztof Cwalina, Brad Abrams
 Tog on Interface: Bruce Tognazzini
 GUI Bloopers: Jeff Johnson

