
User Interface Principles in
API Design

Elliotte Rusty Harold
elharo@metalab.unc.edu

http://www.cafeaulait.org/

““API usability is the intersectionAPI usability is the intersection
of user-centered design andof user-centered design and
excellent coding practicesexcellent coding practices””

 --David Koelle & Geertjan Wielenga

Programmers Are People TooProgrammers Are People Too

 Eat Like Humans
 Sleep Like Humans
 Think Like Humans

User Interface Design is aUser Interface Design is a
ScienceScience
 Based on hypothesis, observation

and experiment
 Well-proven, well-tested theories

Fundamental PrinciplesFundamental Principles

 Consistency is next to godliness
 Simpler is better
 Visible complexity is bad
 Smaller equals easier to use

LibrariesLibraries vs vs. Applications. Applications

 Applications are monolithic
 Only other programmers on the

same team use an application’s API
 Libraries can make very limited

assumptions about how, when,
where, and why API will be invoked

 Boundary is fuzzy

Remember the Remember the PeoplePeople

 Why you need an API
 Who uses the API
 Who designs the API

Focus on the Focus on the UserUser

 Ask what the user wants to do with your
API

 Do not ask what the internal data
structures and algorithms look like

 High level API is better than lower level--
Reduce the number of method calls
needed to accomplish the task

 Design from the outside in
 Start with the end in mind

What to put in an APIWhat to put in an API
 Write sample programs first; Sample-first

programming
 80/20 rule
 Maximal vs. Minimal APIs
 YAGNI
 When in doubt, leave it out!
 Why I’m a conservative

DependenciesDependencies

 Platform version
 Library dependencies
 Built-in vs. 3rd party libraries

Data EncapsulationData Encapsulation

 Public vs. Published
 Fields are private
 Methods are mostly private
 Methods are atomic
 Constructors and destructors
 Communicating with the user

ConstraintsConstraints

 APIs must enforce domain validity
 Preconditions
 Postconditions
 Class invariants
 System invariants
 Construct complete objects only

(Builder pattern)

Error HandlingError Handling

 Specify what happens on bad input
as well as good

 Important for security
 No undefined behavior
 Don’t silently swallow exceptions
 Error messages should be verbose

but clear
 Don’t warn the user

Naming ConventionsNaming Conventions

 Review naming conventions
 Use standard terminology
 Do not abbreviate
 Use domain specific vocabulary
 Consistent terminology: always use

the same word for the same idea
– e.g. add vs. append

 Do not use two words for one idea

Avoid ComplexityAvoid Complexity

 Prefer classes to interfaces
 Prefer constructors to factory

methods
 Avoid excessive abstraction
 You usually don’t need multiple

implementations
 Refactor to patterns; don’t start with

them. Avoid pattern overload!

InheritanceInheritance

 Prefer finality
– (at least on methods)

 Factories and interfaces
 The proper use of protected

Plays well with others (Java):Plays well with others (Java):

 Serializable
 Cloneable(*)
 Comparable
 equals()
 hashCode()
 toString()
 Exception handling
 Thread safety

Plays well with others (.NET):Plays well with others (.NET):

 Equals() / GetHashCode()
 ToString()
 IEquatable<T> / IComparable<T>
 “Collection” suffix for IEnumerable

classes
 Icloneable*
 Override ==, etc. for value types (only)
 No pointer arguments to public methods
 Don’t throw exceptions from overloaded

operators and implicit casts

TestabilityTestability

 The API itself
 Client code that uses the API
 This is a secondary concern

DocumentationDocumentation

 Specification
 Quick Start
 Tutorials
 Example code
 API Documentation
 Per method checklist

Conformance TestingConformance Testing

 Specifications
 Test Suites
 Implementation dependent behavior
 Implementation dependent

extensions

MaintenanceMaintenance

 Planning for the future
 Forwards compatibility
 Backwards compatibility
 Unexpected limits
 Deprecation
 Breaking compatibility
 Interfaces vs. classes

The Last Concern (Performance)The Last Concern (Performance)

 Speed
 Size
 Energy

Case Study: Case Study: JMidi vsJMidi vs. . JFugueJFugue

JMidiJMidi: Play Middle-C: Play Middle-C
Sequencer sequencer = MidiSystem.getSequencer();
Sequence sequence = sequencer.getSequence();
Track track = sequence.createTrack();
ShortMessage onMessage = new ShortMessage();
onMessage.setMessage(ShortMessage.NOTE_ON, 0, 60, 128);
MidiEvent noteOnEvent = new MidiEvent(onMessage, 0);
track.add(noteOnEvent);
ShortMessage offMessage = new ShortMessage();
offMessage.setMessage(ShortMessage.NOTE_OFF, 0, 60, 128);
MidiEvent noteOffEvent = new MidiEvent(offMessage, 200);
track.add(noteOffEvent);
sequencer.start();
try {
 Thread.sleep(track.ticks());
} catch (InterruptedException e) {
 Thread.currentThread().interrupt();
} // courtesy of David Koelle

JFugueJFugue: Play Middle C: Play Middle C
Player player = new Player();
player.play("C");

// Play first 2 measures (and a bit) of “Für Elise”
player.play("E6s D#6s | E6s D#6s E6s B5s D6s C6s | A5i.");
// courtesy David Koelle

Lessons LearnedLessons Learned

 Domain Specific Language
– Takes advantage of domain specific

knowledge
– Easier to write; easier to read
– Java is not the right notation for all use cases

(nor is XML, nor Ruby, nor JSON, nor SQL,
nor…)

 Focus on what the client wants to do; not
how the software does it

 Avoid Abstract Factory; don’t catch
“patternitis”

Case Study: Java MessageCase Study: Java Message
ServiceService
 To put a message on queue:
String queueName = null;
Context jndiContext = null;
QueueConnectionFactory queueConnectionFactory = null;
QueueConnection queueConnection = null;
QueueSession queueSession = null;
Queue queue = null;
QueueSender queueSender = null;
TextMessage message = null;
final int NUM_MSGS;
queueName = new String(args[0]);
try {
 jndiContext = new InitialContext();
} catch (NamingException e) {
 System.exit(1);
}

ContinuedContinued
try {
 queueConnectionFactory = (QueueConnectionFactory)
 jndiContext.lookup("QueueConnectionFactory");
 queue = (Queue) jndiContext.lookup(queueName);
} catch (NamingException e) {
 System.exit(1);
}
try {
 queueConnection =

queueConnectionFactory.createQueueConnection();
 queueSession =

queueConnection.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 queueSender = queueSession.createSender(queue);
 message = queueSession.createTextMessage();
 message.setText("This is message 1");
 queueSender.send(message);
 }
}

FinallyFinally
finally {
 if (queueConnection != null) {
 try {
 queueConnection.close();
 } catch (JMSException e) {}
 }
}

What should this look like?What should this look like?
try {
 Queue q = new Queue("jms://example.com/message");
 q.send("First message");
 q.send("Second message");
} catch (JMSException ex) {
 System.err.println(ex);
}

Case Study: Case Study: BoxLayout vsBoxLayout vs..
GridBagLayoutGridBagLayout

Gridbag Gridbag CalculatorCalculator

BoxLayout BoxLayout CalculatorCalculator

Lessons LearnedLessons Learned

 Follow naming conventions
 Focus on what the user wants to do;

not the internal data model and
algorithms

Further ReadingFurther Reading

 Effective Java: Joshua Bloch
 Effective C#: Bill Wagner
 Framework Design Guidelines:

Krzysztof Cwalina, Brad Abrams
 Tog on Interface: Bruce Tognazzini
 GUI Bloopers: Jeff Johnson

