Coverage Report - org.apache.commons.math.analysis.SplineInterpolator

Classes in this File Line Coverage Branch Coverage Complexity
SplineInterpolator
97% 
100% 
12

 1  
 /*
 2  
  * Copyright 2003-2004 The Apache Software Foundation.
 3  
  *
 4  
  * Licensed under the Apache License, Version 2.0 (the "License");
 5  
  * you may not use this file except in compliance with the License.
 6  
  * You may obtain a copy of the License at
 7  
  *
 8  
  *      http://www.apache.org/licenses/LICENSE-2.0
 9  
  *
 10  
  * Unless required by applicable law or agreed to in writing, software
 11  
  * distributed under the License is distributed on an "AS IS" BASIS,
 12  
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 13  
  * See the License for the specific language governing permissions and
 14  
  * limitations under the License.
 15  
  */
 16  
 package org.apache.commons.math.analysis;
 17  
 
 18  
 /**
 19  
  * Computes a natural (a.k.a. "free", "unclamped") cubic spline interpolation for the data set.
 20  
  * <p>
 21  
  * The {@link #interpolate(double[], double[])} method returns a {@link PolynomialSplineFunction}
 22  
  * consisting of n cubic polynomials, defined over the subintervals determined by the x values,  
 23  
  * x[0] < x[i] ... < x[n].  The x values are referred to as "knot points."
 24  
  * <p>
 25  
  * The value of the PolynomialSplineFunction at a point x that is greater than or equal to the smallest
 26  
  * knot point and strictly less than the largest knot point is computed by finding the subinterval to which
 27  
  * x belongs and computing the value of the corresponding polynomial at <code>x - x[i] </code> where
 28  
  * <code>i</code> is the index of the subinterval.  See {@link PolynomialSplineFunction} for more details.
 29  
  * <p>
 30  
  * The interpolating polynomials satisfy: <ol>
 31  
  * <li>The value of the PolynomialSplineFunction at each of the input x values equals the 
 32  
  *  corresponding y value.</li>
 33  
  * <li>Adjacent polynomials are equal through two derivatives at the knot points (i.e., adjacent polynomials 
 34  
  *  "match up" at the knot points, as do their first and second derivatives).</li>
 35  
  * </ol>
 36  
  * <p>
 37  
  * The cubic spline interpolation algorithm implemented is as described in R.L. Burden, J.D. Faires, 
 38  
  * <u>Numerical Analysis</u>, 4th Ed., 1989, PWS-Kent, ISBN 0-53491-585-X, pp 126-131.
 39  
  *
 40  
  * @version $Revision$ $Date: 2005-02-26 05:11:52 -0800 (Sat, 26 Feb 2005) $
 41  
  *
 42  
  */
 43  10
 public class SplineInterpolator implements UnivariateRealInterpolator {
 44  
     
 45  
     /**
 46  
      * Computes an interpolating function for the data set.
 47  
      * @param x the arguments for the interpolation points
 48  
      * @param y the values for the interpolation points
 49  
      * @return a function which interpolates the data set
 50  
      */
 51  
     public UnivariateRealFunction interpolate(double x[], double y[]) {
 52  12
         if (x.length != y.length) {
 53  2
             throw new IllegalArgumentException("Dataset arrays must have same length.");
 54  
         }
 55  
         
 56  10
         if (x.length < 3) {
 57  0
             throw new IllegalArgumentException
 58  
                 ("At least 3 datapoints are required to compute a spline interpolant");
 59  
         }
 60  
         
 61  
         // Number of intervals.  The number of data points is n + 1.
 62  10
         int n = x.length - 1;   
 63  
         
 64  42
         for (int i = 0; i < n; i++) {
 65  34
             if (x[i]  >= x[i + 1]) {
 66  2
                 throw new IllegalArgumentException("Dataset x values must be strictly increasing.");
 67  
             }
 68  
         }
 69  
         
 70  
         // Differences between knot points
 71  8
         double h[] = new double[n];
 72  38
         for (int i = 0; i < n; i++) {
 73  30
             h[i] = x[i + 1] - x[i];
 74  
         }
 75  
         
 76  8
         double mu[] = new double[n];
 77  8
         double z[] = new double[n + 1];
 78  8
         mu[0] = 0d;
 79  8
         z[0] = 0d;
 80  8
         double g = 0;
 81  30
         for (int i = 1; i < n; i++) {
 82  22
             g = 2d * (x[i+1]  - x[i - 1]) - h[i - 1] * mu[i -1];
 83  22
             mu[i] = h[i] / g;
 84  22
             z[i] = (3d * (y[i + 1] * h[i - 1] - y[i] * (x[i + 1] - x[i - 1])+ y[i - 1] * h[i]) /
 85  
                     (h[i - 1] * h[i]) - h[i - 1] * z[i - 1]) / g;
 86  
         }
 87  
        
 88  
         // cubic spline coefficients --  b is linear, c quadratic, d is cubic (original y's are constants)
 89  8
         double b[] = new double[n];
 90  8
         double c[] = new double[n + 1];
 91  8
         double d[] = new double[n];
 92  
         
 93  8
         z[n] = 0d;
 94  8
         c[n] = 0d;
 95  
         
 96  38
         for (int j = n -1; j >=0; j--) {
 97  30
             c[j] = z[j] - mu[j] * c[j + 1];
 98  30
             b[j] = (y[j + 1] - y[j]) / h[j] - h[j] * (c[j + 1] + 2d * c[j]) / 3d;
 99  30
             d[j] = (c[j + 1] - c[j]) / (3d * h[j]);
 100  
         }
 101  
         
 102  8
         PolynomialFunction polynomials[] = new PolynomialFunction[n];
 103  8
         double coefficients[] = new double[4];
 104  38
         for (int i = 0; i < n; i++) {
 105  30
             coefficients[0] = y[i];
 106  30
             coefficients[1] = b[i];
 107  30
             coefficients[2] = c[i];
 108  30
             coefficients[3] = d[i];
 109  30
             polynomials[i] = new PolynomialFunction(coefficients);
 110  
         }
 111  
         
 112  8
         return new PolynomialSplineFunction(x, polynomials);
 113  
     }
 114  
 
 115  
 }