Coverage Report - org.apache.commons.math.analysis.UnivariateRealSolver

Classes in this File Line Coverage Branch Coverage Complexity
UnivariateRealSolver
N/A 
N/A 
1

 1  
 /*
 2  
  * Copyright 2003-2004 The Apache Software Foundation.
 3  
  *
 4  
  * Licensed under the Apache License, Version 2.0 (the "License");
 5  
  * you may not use this file except in compliance with the License.
 6  
  * You may obtain a copy of the License at
 7  
  *
 8  
  *      http://www.apache.org/licenses/LICENSE-2.0
 9  
  *
 10  
  * Unless required by applicable law or agreed to in writing, software
 11  
  * distributed under the License is distributed on an "AS IS" BASIS,
 12  
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 13  
  * See the License for the specific language governing permissions and
 14  
  * limitations under the License.
 15  
  */
 16  
 package org.apache.commons.math.analysis;
 17  
 
 18  
 import org.apache.commons.math.ConvergenceException;
 19  
 import org.apache.commons.math.FunctionEvaluationException;
 20  
 
 21  
 
 22  
 /**
 23  
  * Interface for (univariate real) rootfinding algorithms.
 24  
  * <p>
 25  
  * Implementations will search for only one zero in the given interval.
 26  
  *  
 27  
  * @version $Revision$ $Date: 2005-02-26 05:11:52 -0800 (Sat, 26 Feb 2005) $
 28  
  */
 29  
 public interface UnivariateRealSolver {
 30  
 
 31  
     /**
 32  
      * Set the upper limit for the number of iterations.
 33  
      * <p>
 34  
      * Usually a high iteration count indicates convergence problems. However,
 35  
      * the "reasonable value" varies widely for different solvers.  Users are
 36  
      * advised to use the default value supplied by the solver.
 37  
      * <p>
 38  
      * A <code>ConvergenceException</code> will be thrown if this number
 39  
      * is exceeded.
 40  
      *  
 41  
      * @param count maximum number of iterations
 42  
      */
 43  
     void setMaximalIterationCount(int count);
 44  
 
 45  
     /**
 46  
      * Get the upper limit for the number of iterations.
 47  
      * 
 48  
      * @return the actual upper limit
 49  
      */
 50  
     int getMaximalIterationCount();
 51  
 
 52  
     /**
 53  
      * Reset the upper limit for the number of iterations to the default.
 54  
      * <p>
 55  
      * The default value is supplied by the solver implementation.
 56  
      * 
 57  
      * @see #setMaximalIterationCount(int)
 58  
      */
 59  
     void resetMaximalIterationCount();
 60  
 
 61  
     /**
 62  
      * Set the absolute accuracy.
 63  
      * <p>
 64  
      * The default is usually choosen so that roots in the interval
 65  
      * -10..-0.1 and +0.1..+10 can be found with a reasonable accuracy. If the
 66  
      * expected absolute value of your roots is of much smaller magnitude, set
 67  
      * this to a smaller value.
 68  
      * <p>
 69  
      * Solvers are advised to do a plausibility check with the relative
 70  
      * accuracy, but clients should not rely on this.
 71  
      *  
 72  
      * @param accuracy the accuracy.
 73  
      * @throws IllegalArgumentException if the accuracy can't be achieved by
 74  
      * the solver or is otherwise deemed unreasonable. 
 75  
      */
 76  
     void setAbsoluteAccuracy(double accuracy);
 77  
 
 78  
     /**
 79  
      * Get the actual absolute accuracy.
 80  
      * 
 81  
      * @return the accuracy
 82  
      */
 83  
     double getAbsoluteAccuracy();
 84  
 
 85  
     /**
 86  
      * Reset the absolute accuracy to the default.
 87  
      * <p>
 88  
      * The default value is provided by the solver implementation.
 89  
      */
 90  
     void resetAbsoluteAccuracy();
 91  
 
 92  
     /**
 93  
      * Set the relative accuracy.
 94  
      * <p>
 95  
      * This is used to stop iterations if the absolute accuracy can't be
 96  
      * achieved due to large values or short mantissa length.
 97  
      * <p>
 98  
      * If this should be the primary criterion for convergence rather then a
 99  
      * safety measure, set the absolute accuracy to a ridiculously small value,
 100  
      * like 1E-1000.
 101  
      * 
 102  
      * @param accuracy the relative accuracy.
 103  
      * @throws IllegalArgumentException if the accuracy can't be achieved by
 104  
      *  the solver or is otherwise deemed unreasonable. 
 105  
      */
 106  
     void setRelativeAccuracy(double accuracy);
 107  
 
 108  
     /**
 109  
      * Get the actual relative accuracy.
 110  
      * @return the accuracy
 111  
      */
 112  
     double getRelativeAccuracy();
 113  
 
 114  
     /**
 115  
      * Reset the relative accuracy to the default.
 116  
      * The default value is provided by the solver implementation.
 117  
      */
 118  
     void resetRelativeAccuracy();
 119  
 
 120  
     /**
 121  
      * Set the function value accuracy.
 122  
      * <p>
 123  
      * This is used to determine whan an evaluated function value or some other
 124  
      * value which is used as divisor is zero.
 125  
      * <p>
 126  
      * This is a safety guard and it shouldn't be necesary to change this in
 127  
      * general.
 128  
      * 
 129  
      * @param accuracy the accuracy.
 130  
      * @throws IllegalArgumentException if the accuracy can't be achieved by
 131  
      * the solver or is otherwise deemed unreasonable. 
 132  
      */
 133  
     void setFunctionValueAccuracy(double accuracy);
 134  
 
 135  
     /**
 136  
      * Get the actual function value accuracy.
 137  
      * @return the accuracy
 138  
      */
 139  
     double getFunctionValueAccuracy();
 140  
 
 141  
     /**
 142  
      * Reset the actual function accuracy to the default.
 143  
      * The default value is provided by the solver implementation.
 144  
      */
 145  
     void resetFunctionValueAccuracy();
 146  
 
 147  
     /**
 148  
      * Solve for a zero root in the given interval.
 149  
      * A solver may require that the interval brackets a single zero root.
 150  
      * 
 151  
      * @param min the lower bound for the interval.
 152  
      * @param max the upper bound for the interval.
 153  
      * @return a value where the function is zero
 154  
      * @throws ConvergenceException if the maximum iteration count is exceeded
 155  
      * or the solver detects convergence problems otherwise.
 156  
      * @throws FunctionEvaluationException if an error occurs evaluating the
 157  
      * function
 158  
      * @throws IllegalArgumentException if min > max or the endpoints do not
 159  
      * satisfy the requirements specified by the solver
 160  
      */
 161  
     double solve(double min, double max) throws ConvergenceException, 
 162  
         FunctionEvaluationException;
 163  
 
 164  
     /**
 165  
      * Solve for a zero in the given interval, start at startValue.
 166  
      * A solver may require that the interval brackets a single zero root.
 167  
      * 
 168  
      * @param min the lower bound for the interval.
 169  
      * @param max the upper bound for the interval.
 170  
      * @param startValue the start value to use
 171  
      * @return a value where the function is zero
 172  
      * @throws ConvergenceException if the maximum iteration count is exceeded
 173  
      * or the solver detects convergence problems otherwise.
 174  
      * @throws FunctionEvaluationException if an error occurs evaluating the
 175  
      * function
 176  
      * @throws IllegalArgumentException if min > max or the arguments do not
 177  
      * satisfy the requirements specified by the solver
 178  
      */
 179  
     double solve(double min, double max, double startValue)
 180  
         throws ConvergenceException, FunctionEvaluationException;
 181  
 
 182  
     /**
 183  
      * Get the result of the last run of the solver.
 184  
      * 
 185  
      * @return the last result.
 186  
      * @throws IllegalStateException if there is no result available, either
 187  
      * because no result was yet computed or the last attempt failed.
 188  
      */
 189  
     double getResult();
 190  
 
 191  
     /**
 192  
      * Get the number of iterations in the last run of the solver.
 193  
      * <p>
 194  
      * This is mainly meant for testing purposes. It may occasionally
 195  
      * help track down performance problems: if the iteration count
 196  
      * is notoriously high, check whether the function is evaluated
 197  
      * properly, and whether another solver is more amenable to the
 198  
      * problem.
 199  
      * 
 200  
      * @return the last iteration count.
 201  
      * @throws IllegalStateException if there is no result available, either
 202  
      * because no result was yet computed or the last attempt failed.
 203  
      */
 204  
     int getIterationCount();
 205  
 }