Coverage Report - org.apache.commons.math.distribution.PoissonDistributionImpl

Classes in this File Line Coverage Branch Coverage Complexity
PoissonDistributionImpl
100% 
100% 
2

 1  
 /*
 2  
  * Copyright 2004 The Apache Software Foundation.
 3  
  *
 4  
  * Licensed under the Apache License, Version 2.0 (the "License");
 5  
  * you may not use this file except in compliance with the License.
 6  
  * You may obtain a copy of the License at
 7  
  *
 8  
  *      http://www.apache.org/licenses/LICENSE-2.0
 9  
  *
 10  
  * Unless required by applicable law or agreed to in writing, software
 11  
  * distributed under the License is distributed on an "AS IS" BASIS,
 12  
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 13  
  * See the License for the specific language governing permissions and
 14  
  * limitations under the License.
 15  
  */
 16  
 package org.apache.commons.math.distribution;
 17  
 
 18  
 import java.io.Serializable;
 19  
 
 20  
 import org.apache.commons.math.MathException;
 21  
 import org.apache.commons.math.special.Gamma;
 22  
 import org.apache.commons.math.util.MathUtils;
 23  
 
 24  
 /**
 25  
  * Implementation for the {@link PoissonDistribution}
 26  
  * 
 27  
  * @version $Revision$ $Date: 2005-05-15 11:22:02 -0700 (Sun, 15 May 2005) $
 28  
  */
 29  
 public class PoissonDistributionImpl extends AbstractIntegerDistribution
 30  
         implements PoissonDistribution, Serializable {
 31  
 
 32  
     /** Serializable version identifier */
 33  
     static final long serialVersionUID = -3349935121172596109L;
 34  
     
 35  
     /**
 36  
      * Holds the Poisson mean for the distribution.
 37  
      */
 38  
     private double mean;
 39  
 
 40  
     /**
 41  
      * Create a new Poisson distribution with the given the mean.
 42  
      * The mean value must be positive; otherwise an 
 43  
      * <code>IllegalArgument</code> is thrown.
 44  
      * 
 45  
      * @param p the Poisson mean
 46  
      * @throws IllegalArgumentException if p &le; 0
 47  
      */
 48  
     public PoissonDistributionImpl(double p) {
 49  28
         super();
 50  28
         setMean(p);
 51  28
     }
 52  
 
 53  
     /**
 54  
      * Get the Poisson mean for the distribution.
 55  
      * 
 56  
      * @return the Poisson mean for the distribution.
 57  
      */
 58  
     public double getMean() {
 59  34
         return this.mean;
 60  
     }
 61  
 
 62  
     /**
 63  
      * Set the Poisson mean for the distribution.
 64  
      * The mean value must be positive; otherwise an 
 65  
      * <code>IllegalArgument</code> is thrown.
 66  
      * 
 67  
      * @param p the Poisson mean value
 68  
      * @throws IllegalArgumentException if p &le; 0
 69  
      */
 70  
     public void setMean(double p) {
 71  66
         if (p <= 0) {
 72  2
             throw new IllegalArgumentException(
 73  
                     "The Poisson mean must be positive");
 74  
         }
 75  64
         this.mean = p;
 76  64
     }
 77  
 
 78  
     /**
 79  
      * The probability mass function P(X = x) for a Poisson distribution.
 80  
      * 
 81  
      * @param x the value at which the probability density function is evaluated.
 82  
      * @return the value of the probability mass function at x
 83  
      */
 84  
     public double probability(int x) {
 85  18
         if (x < 0 || x == Integer.MAX_VALUE) {
 86  2
             return 0;
 87  
         }
 88  16
         return Math.pow(getMean(), x) / 
 89  
             MathUtils.factorialDouble(x) * Math.exp(-mean);
 90  
     }
 91  
     
 92  
     /**
 93  
      * The probability distribution function P(X <= x) for a Poisson distribution.
 94  
      * 
 95  
      * @param x the value at which the PDF is evaluated.
 96  
      * @return Poisson distribution function evaluated at x
 97  
      * @throws MathException if the cumulative probability can not be
 98  
      *            computed due to convergence or other numerical errors.
 99  
      */
 100  
     public double cumulativeProbability(int x) throws MathException {
 101  6360
         if (x < 0) {
 102  12
             return 0;
 103  
         }
 104  6348
         if (x == Integer.MAX_VALUE) {
 105  2
             return 1;
 106  
         }
 107  6346
         return Gamma.regularizedGammaQ((double)x + 1, mean, 
 108  
                 1E-12, Integer.MAX_VALUE);
 109  
     }
 110  
 
 111  
     /**
 112  
      * Calculates the Poisson distribution function using a normal
 113  
      * approximation.  The <code>N(mean, sqrt(mean))</code>
 114  
      * distribution is used to approximate the Poisson distribution.
 115  
      * <p>
 116  
      * The computation uses "half-correction" -- evaluating the normal
 117  
      * distribution function at <code>x + 0.5</code>
 118  
      * 
 119  
      * @param x the upper bound, inclusive
 120  
      * @return the distribution function value calculated using a normal approximation
 121  
      * @throws MathException if an error occurs computing the normal approximation
 122  
      */
 123  
     public double normalApproximateProbability(int x) throws MathException {
 124  8
         NormalDistribution normal = DistributionFactory.newInstance()
 125  
                 .createNormalDistribution(getMean(),
 126  
                         Math.sqrt(getMean()));
 127  
 
 128  
         // calculate the probability using half-correction
 129  8
         return normal.cumulativeProbability(x + 0.5);
 130  
     }
 131  
 
 132  
     /**
 133  
      * Access the domain value lower bound, based on <code>p</code>, used to
 134  
      * bracket a CDF root.  This method is used by
 135  
      * {@link #inverseCumulativeProbability(double)} to find critical values.
 136  
      * 
 137  
      * @param p the desired probability for the critical value
 138  
      * @return domain lower bound
 139  
      */
 140  
     protected int getDomainLowerBound(double p) {
 141  182
         return 0;
 142  
     }
 143  
 
 144  
     /**
 145  
      * Access the domain value upper bound, based on <code>p</code>, used to
 146  
      * bracket a CDF root.  This method is used by
 147  
      * {@link #inverseCumulativeProbability(double)} to find critical values.
 148  
      * 
 149  
      * @param p the desired probability for the critical value
 150  
      * @return domain upper bound
 151  
      */
 152  
     protected int getDomainUpperBound(double p) {
 153  182
         return Integer.MAX_VALUE;
 154  
     }
 155  
     
 156  
 }