| Classes in this File | Line Coverage | Branch Coverage | Complexity | ||||||||
| UnivariateRealSolverUtils |
|
| 2.7142857142857144;2.714 |
| 1 | /* |
|
| 2 | * Copyright 2003-2004 The Apache Software Foundation. |
|
| 3 | * |
|
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
|
| 5 | * you may not use this file except in compliance with the License. |
|
| 6 | * You may obtain a copy of the License at |
|
| 7 | * |
|
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
|
| 9 | * |
|
| 10 | * Unless required by applicable law or agreed to in writing, software |
|
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
|
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
| 13 | * See the License for the specific language governing permissions and |
|
| 14 | * limitations under the License. |
|
| 15 | */ |
|
| 16 | package org.apache.commons.math.analysis; |
|
| 17 | ||
| 18 | import org.apache.commons.math.FunctionEvaluationException; |
|
| 19 | import org.apache.commons.math.ConvergenceException; |
|
| 20 | ||
| 21 | /** |
|
| 22 | * Utility routines for {@link UnivariateRealSolver} objects. |
|
| 23 | * |
|
| 24 | * @version $Revision$ $Date: 2005-02-26 05:11:52 -0800 (Sat, 26 Feb 2005) $ |
|
| 25 | */ |
|
| 26 | public class UnivariateRealSolverUtils { |
|
| 27 | /** |
|
| 28 | * Default constructor. |
|
| 29 | */ |
|
| 30 | private UnivariateRealSolverUtils() { |
|
| 31 | 0 | super(); |
| 32 | 0 | } |
| 33 | ||
| 34 | /** Cached solver factory */ |
|
| 35 | 20 | private static UnivariateRealSolverFactory factory = null; |
| 36 | ||
| 37 | /** |
|
| 38 | * Convenience method to find a zero of a univariate real function. A default |
|
| 39 | * solver is used. |
|
| 40 | * |
|
| 41 | * @param f the function. |
|
| 42 | * @param x0 the lower bound for the interval. |
|
| 43 | * @param x1 the upper bound for the interval. |
|
| 44 | * @return a value where the function is zero. |
|
| 45 | * @throws ConvergenceException if the iteration count was exceeded |
|
| 46 | * @throws FunctionEvaluationException if an error occurs evaluating |
|
| 47 | * the function |
|
| 48 | * @throws IllegalArgumentException if f is null or the endpoints do not |
|
| 49 | * specify a valid interval |
|
| 50 | */ |
|
| 51 | public static double solve(UnivariateRealFunction f, double x0, double x1) |
|
| 52 | throws ConvergenceException, FunctionEvaluationException { |
|
| 53 | 190 | setup(f); |
| 54 | 188 | return factory.newDefaultSolver(f).solve(x0, x1); |
| 55 | } |
|
| 56 | ||
| 57 | /** |
|
| 58 | * Convenience method to find a zero of a univariate real function. A default |
|
| 59 | * solver is used. |
|
| 60 | * |
|
| 61 | * @param f the function |
|
| 62 | * @param x0 the lower bound for the interval |
|
| 63 | * @param x1 the upper bound for the interval |
|
| 64 | * @param absoluteAccuracy the accuracy to be used by the solver |
|
| 65 | * @return a value where the function is zero |
|
| 66 | * @throws ConvergenceException if the iteration count is exceeded |
|
| 67 | * @throws FunctionEvaluationException if an error occurs evaluating the |
|
| 68 | * function |
|
| 69 | * @throws IllegalArgumentException if f is null, the endpoints do not |
|
| 70 | * specify a valid interval, or the absoluteAccuracy is not valid for the |
|
| 71 | * default solver |
|
| 72 | */ |
|
| 73 | public static double solve(UnivariateRealFunction f, double x0, double x1, |
|
| 74 | double absoluteAccuracy) throws ConvergenceException, |
|
| 75 | FunctionEvaluationException { |
|
| 76 | ||
| 77 | 8 | setup(f); |
| 78 | 6 | UnivariateRealSolver solver = factory.newDefaultSolver(f); |
| 79 | 6 | solver.setAbsoluteAccuracy(absoluteAccuracy); |
| 80 | 6 | return solver.solve(x0, x1); |
| 81 | } |
|
| 82 | ||
| 83 | /** |
|
| 84 | * This method attempts to find two values a and b satisfying <ul> |
|
| 85 | * <li> <code> lowerBound <= a < initial < b <= upperBound</code> </li> |
|
| 86 | * <li> <code> f(a) * f(b) < 0 </code></li> |
|
| 87 | * </ul> |
|
| 88 | * If f is continuous on <code>[a,b],</code> this means that <code>a</code> |
|
| 89 | * and <code>b</code> bracket a root of f. |
|
| 90 | * <p> |
|
| 91 | * The algorithm starts by setting |
|
| 92 | * <code>a := initial -1; b := initial +1,</code> examines the value of the |
|
| 93 | * function at <code>a</code> and <code>b</code> and keeps moving |
|
| 94 | * the endpoints out by one unit each time through a loop that terminates |
|
| 95 | * when one of the following happens: <ul> |
|
| 96 | * <li> <code> f(a) * f(b) < 0 </code> -- success!</li> |
|
| 97 | * <li> <code> a = lower </code> and <code> b = upper</code> |
|
| 98 | * -- ConvergenceException </li> |
|
| 99 | * <li> <code> Integer.MAX_VALUE</code> iterations elapse |
|
| 100 | * -- ConvergenceException </li> |
|
| 101 | * </ul> |
|
| 102 | * <p> |
|
| 103 | * <strong>Note: </strong> this method can take |
|
| 104 | * <code>Integer.MAX_VALUE</code> iterations to throw a |
|
| 105 | * <code>ConvergenceException.</code> Unless you are confident that there |
|
| 106 | * is a root between <code>lowerBound</code> and <code>upperBound</code> |
|
| 107 | * near <code>initial,</code> it is better to use |
|
| 108 | * {@link #bracket(UnivariateRealFunction, double, double, double, int)}, |
|
| 109 | * explicitly specifying the maximum number of iterations. |
|
| 110 | * |
|
| 111 | * @param function the function |
|
| 112 | * @param initial initial midpoint of interval being expanded to |
|
| 113 | * bracket a root |
|
| 114 | * @param lowerBound lower bound (a is never lower than this value) |
|
| 115 | * @param upperBound upper bound (b never is greater than this |
|
| 116 | * value) |
|
| 117 | * @return a two element array holding {a, b} |
|
| 118 | * @throws ConvergenceException if a root can not be bracketted |
|
| 119 | * @throws FunctionEvaluationException if an error occurs evaluating the |
|
| 120 | * function |
|
| 121 | * @throws IllegalArgumentException if function is null, maximumIterations |
|
| 122 | * is not positive, or initial is not between lowerBound and upperBound |
|
| 123 | */ |
|
| 124 | public static double[] bracket(UnivariateRealFunction function, |
|
| 125 | double initial, double lowerBound, double upperBound) |
|
| 126 | throws ConvergenceException, FunctionEvaluationException { |
|
| 127 | 172 | return bracket( function, initial, lowerBound, upperBound, |
| 128 | Integer.MAX_VALUE ) ; |
|
| 129 | } |
|
| 130 | ||
| 131 | /** |
|
| 132 | * This method attempts to find two values a and b satisfying <ul> |
|
| 133 | * <li> <code> lowerBound <= a < initial < b <= upperBound</code> </li> |
|
| 134 | * <li> <code> f(a) * f(b) < 0 </code> </li> |
|
| 135 | * </ul> |
|
| 136 | * If f is continuous on <code>[a,b],</code> this means that <code>a</code> |
|
| 137 | * and <code>b</code> bracket a root of f. |
|
| 138 | * <p> |
|
| 139 | * The algorithm starts by setting |
|
| 140 | * <code>a := initial -1; b := initial +1,</code> examines the value of the |
|
| 141 | * function at <code>a</code> and <code>b</code> and keeps moving |
|
| 142 | * the endpoints out by one unit each time through a loop that terminates |
|
| 143 | * when one of the following happens: <ul> |
|
| 144 | * <li> <code> f(a) * f(b) < 0 </code> -- success!</li> |
|
| 145 | * <li> <code> a = lower </code> and <code> b = upper</code> |
|
| 146 | * -- ConvergenceException </li> |
|
| 147 | * <li> <code> maximumIterations</code> iterations elapse |
|
| 148 | * -- ConvergenceException </li></ul> |
|
| 149 | * |
|
| 150 | * @param function the function |
|
| 151 | * @param initial initial midpoint of interval being expanded to |
|
| 152 | * bracket a root |
|
| 153 | * @param lowerBound lower bound (a is never lower than this value) |
|
| 154 | * @param upperBound upper bound (b never is greater than this |
|
| 155 | * value) |
|
| 156 | * @param maximumIterations maximum number of iterations to perform |
|
| 157 | * @return a two element array holding {a, b}. |
|
| 158 | * @throws ConvergenceException if the algorithm fails to find a and b |
|
| 159 | * satisfying the desired conditions |
|
| 160 | * @throws FunctionEvaluationException if an error occurs evaluating the |
|
| 161 | * function |
|
| 162 | * @throws IllegalArgumentException if function is null, maximumIterations |
|
| 163 | * is not positive, or initial is not between lowerBound and upperBound |
|
| 164 | */ |
|
| 165 | public static double[] bracket(UnivariateRealFunction function, |
|
| 166 | double initial, double lowerBound, double upperBound, |
|
| 167 | int maximumIterations) throws ConvergenceException, |
|
| 168 | FunctionEvaluationException { |
|
| 169 | ||
| 170 | 174 | if (function == null) { |
| 171 | 2 | throw new IllegalArgumentException ("function is null."); |
| 172 | } |
|
| 173 | 172 | if (maximumIterations <= 0) { |
| 174 | 2 | throw new IllegalArgumentException |
| 175 | ("bad value for maximumIterations: " + maximumIterations); |
|
| 176 | } |
|
| 177 | 170 | if (initial < lowerBound || initial > upperBound || lowerBound >= upperBound) { |
| 178 | 4 | throw new IllegalArgumentException |
| 179 | ("Invalid endpoint parameters: lowerBound=" + lowerBound + |
|
| 180 | " initial=" + initial + " upperBound=" + upperBound); |
|
| 181 | } |
|
| 182 | 166 | double a = initial; |
| 183 | 166 | double b = initial; |
| 184 | double fa; |
|
| 185 | double fb; |
|
| 186 | 166 | int numIterations = 0 ; |
| 187 | ||
| 188 | do { |
|
| 189 | 2070 | a = Math.max(a - 1.0, lowerBound); |
| 190 | 2070 | b = Math.min(b + 1.0, upperBound); |
| 191 | 2070 | fa = function.value(a); |
| 192 | ||
| 193 | 2070 | fb = function.value(b); |
| 194 | 2070 | numIterations++ ; |
| 195 | 2070 | } while ((fa * fb > 0.0) && (numIterations < maximumIterations) && |
| 196 | ((a > lowerBound) || (b < upperBound))); |
|
| 197 | ||
| 198 | 166 | if (fa * fb >= 0.0 ) { |
| 199 | 2 | throw new ConvergenceException |
| 200 | ("Number of iterations= " + numIterations + |
|
| 201 | " maximum iterations= " + maximumIterations + |
|
| 202 | " initial= " + initial + " lowerBound=" + lowerBound + |
|
| 203 | " upperBound=" + upperBound + " final a value=" + a + |
|
| 204 | " final b value=" + b + " f(a)=" + fa + " f(b)=" + fb); |
|
| 205 | } |
|
| 206 | ||
| 207 | 164 | return new double[]{a, b}; |
| 208 | } |
|
| 209 | ||
| 210 | /** |
|
| 211 | * Compute the midpoint of two values. |
|
| 212 | * |
|
| 213 | * @param a first value. |
|
| 214 | * @param b second value. |
|
| 215 | * @return the midpoint. |
|
| 216 | */ |
|
| 217 | public static double midpoint(double a, double b) { |
|
| 218 | 1908 | return (a + b) * .5; |
| 219 | } |
|
| 220 | ||
| 221 | /** |
|
| 222 | * Checks to see if f is null, throwing IllegalArgumentException if so. |
|
| 223 | * Also initializes factory if factory is null. |
|
| 224 | * |
|
| 225 | * @param f input function |
|
| 226 | * @throws IllegalArgumentException if f is null |
|
| 227 | */ |
|
| 228 | private static void setup(UnivariateRealFunction f) { |
|
| 229 | ||
| 230 | 198 | if (f == null) { |
| 231 | 4 | throw new IllegalArgumentException("function can not be null."); |
| 232 | } |
|
| 233 | ||
| 234 | 194 | if (factory == null) { |
| 235 | 16 | factory = UnivariateRealSolverFactory.newInstance(); |
| 236 | } |
|
| 237 | 194 | } |
| 238 | } |