| Classes in this File | Line Coverage | Branch Coverage | Complexity | ||||||||
| BinomialDistributionImpl |
|
| 2.1;2.1 |
| 1 | /* |
|
| 2 | * Copyright 2003-2004 The Apache Software Foundation. |
|
| 3 | * |
|
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
|
| 5 | * you may not use this file except in compliance with the License. |
|
| 6 | * You may obtain a copy of the License at |
|
| 7 | * |
|
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
|
| 9 | * |
|
| 10 | * Unless required by applicable law or agreed to in writing, software |
|
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
|
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
| 13 | * See the License for the specific language governing permissions and |
|
| 14 | * limitations under the License. |
|
| 15 | */ |
|
| 16 | package org.apache.commons.math.distribution; |
|
| 17 | ||
| 18 | import java.io.Serializable; |
|
| 19 | ||
| 20 | import org.apache.commons.math.MathException; |
|
| 21 | import org.apache.commons.math.special.Beta; |
|
| 22 | import org.apache.commons.math.util.MathUtils; |
|
| 23 | ||
| 24 | /** |
|
| 25 | * The default implementation of {@link BinomialDistribution}. |
|
| 26 | * |
|
| 27 | * @version $Revision$ $Date: 2005-06-26 15:20:57 -0700 (Sun, 26 Jun 2005) $ |
|
| 28 | */ |
|
| 29 | public class BinomialDistributionImpl |
|
| 30 | extends AbstractIntegerDistribution |
|
| 31 | implements BinomialDistribution, Serializable { |
|
| 32 | ||
| 33 | /** Serializable version identifier */ |
|
| 34 | static final long serialVersionUID = 6751309484392813623L; |
|
| 35 | ||
| 36 | /** The number of trials. */ |
|
| 37 | private int numberOfTrials; |
|
| 38 | ||
| 39 | /** The probability of success. */ |
|
| 40 | private double probabilityOfSuccess; |
|
| 41 | ||
| 42 | /** |
|
| 43 | * Create a binomial distribution with the given number of trials and |
|
| 44 | * probability of success. |
|
| 45 | * @param trials the number of trials. |
|
| 46 | * @param p the probability of success. |
|
| 47 | */ |
|
| 48 | public BinomialDistributionImpl(int trials, double p) { |
|
| 49 | 30 | super(); |
| 50 | 30 | setNumberOfTrials(trials); |
| 51 | 28 | setProbabilityOfSuccess(p); |
| 52 | 24 | } |
| 53 | ||
| 54 | /** |
|
| 55 | * Access the number of trials for this distribution. |
|
| 56 | * @return the number of trials. |
|
| 57 | */ |
|
| 58 | public int getNumberOfTrials() { |
|
| 59 | 540 | return numberOfTrials; |
| 60 | } |
|
| 61 | ||
| 62 | /** |
|
| 63 | * Access the probability of success for this distribution. |
|
| 64 | * @return the probability of success. |
|
| 65 | */ |
|
| 66 | public double getProbabilityOfSuccess() { |
|
| 67 | 258 | return probabilityOfSuccess; |
| 68 | } |
|
| 69 | ||
| 70 | /** |
|
| 71 | * Change the number of trials for this distribution. |
|
| 72 | * @param trials the new number of trials. |
|
| 73 | * @throws IllegalArgumentException if <code>trials</code> is not a valid |
|
| 74 | * number of trials. |
|
| 75 | */ |
|
| 76 | public void setNumberOfTrials(int trials) { |
|
| 77 | 30 | if (trials < 0) { |
| 78 | 2 | throw new IllegalArgumentException("number of trials must be non-negative."); |
| 79 | } |
|
| 80 | 28 | numberOfTrials = trials; |
| 81 | 28 | } |
| 82 | ||
| 83 | /** |
|
| 84 | * Change the probability of success for this distribution. |
|
| 85 | * @param p the new probability of success. |
|
| 86 | * @throws IllegalArgumentException if <code>p</code> is not a valid |
|
| 87 | * probability. |
|
| 88 | */ |
|
| 89 | public void setProbabilityOfSuccess(double p) { |
|
| 90 | 28 | if (p < 0.0 || p > 1.0) { |
| 91 | 4 | throw new IllegalArgumentException("probability of success must be between 0.0 and 1.0, inclusive."); |
| 92 | } |
|
| 93 | 24 | probabilityOfSuccess = p; |
| 94 | 24 | } |
| 95 | ||
| 96 | /** |
|
| 97 | * Access the domain value lower bound, based on <code>p</code>, used to |
|
| 98 | * bracket a PDF root. |
|
| 99 | * |
|
| 100 | * @param p the desired probability for the critical value |
|
| 101 | * @return domain value lower bound, i.e. |
|
| 102 | * P(X < <i>lower bound</i>) < <code>p</code> |
|
| 103 | */ |
|
| 104 | protected int getDomainLowerBound(double p) { |
|
| 105 | 28 | return -1; |
| 106 | } |
|
| 107 | ||
| 108 | /** |
|
| 109 | * Access the domain value upper bound, based on <code>p</code>, used to |
|
| 110 | * bracket a PDF root. |
|
| 111 | * |
|
| 112 | * @param p the desired probability for the critical value |
|
| 113 | * @return domain value upper bound, i.e. |
|
| 114 | * P(X < <i>upper bound</i>) > <code>p</code> |
|
| 115 | */ |
|
| 116 | protected int getDomainUpperBound(double p) { |
|
| 117 | 28 | return getNumberOfTrials(); |
| 118 | } |
|
| 119 | ||
| 120 | /** |
|
| 121 | * For this distribution, X, this method returns P(X ≤ x). |
|
| 122 | * @param x the value at which the PDF is evaluated. |
|
| 123 | * @return PDF for this distribution. |
|
| 124 | * @throws MathException if the cumulative probability can not be |
|
| 125 | * computed due to convergence or other numerical errors. |
|
| 126 | */ |
|
| 127 | public double cumulativeProbability(int x) throws MathException { |
|
| 128 | double ret; |
|
| 129 | 226 | if (x < 0) { |
| 130 | 14 | ret = 0.0; |
| 131 | 212 | } else if (x >= getNumberOfTrials()) { |
| 132 | 22 | ret = 1.0; |
| 133 | } else { |
|
| 134 | 190 | ret = |
| 135 | 1.0 - Beta.regularizedBeta( |
|
| 136 | getProbabilityOfSuccess(), |
|
| 137 | x + 1.0, |
|
| 138 | getNumberOfTrials() - x); |
|
| 139 | } |
|
| 140 | 226 | return ret; |
| 141 | } |
|
| 142 | ||
| 143 | /** |
|
| 144 | * For this disbution, X, this method returns P(X = x). |
|
| 145 | * |
|
| 146 | * @param x the value at which the PMF is evaluated. |
|
| 147 | * @return PMF for this distribution. |
|
| 148 | */ |
|
| 149 | public double probability(int x) { |
|
| 150 | double ret; |
|
| 151 | 48 | if (x < 0 || x > getNumberOfTrials()) { |
| 152 | 14 | ret = 0.0; |
| 153 | } else { |
|
| 154 | 34 | ret = MathUtils.binomialCoefficientDouble( |
| 155 | getNumberOfTrials(), x) * |
|
| 156 | Math.pow(getProbabilityOfSuccess(), x) * |
|
| 157 | Math.pow(1.0 - getProbabilityOfSuccess(), |
|
| 158 | getNumberOfTrials() - x); |
|
| 159 | } |
|
| 160 | 48 | return ret; |
| 161 | } |
|
| 162 | ||
| 163 | /** |
|
| 164 | * For this distribution, X, this method returns the largest x, such |
|
| 165 | * that P(X ≤ x) ≤ <code>p</code>. |
|
| 166 | * <p> |
|
| 167 | * Returns <code>-1</code> for p=0 and <code>Integer.MAX_VALUE</code> for |
|
| 168 | * p=1. |
|
| 169 | * |
|
| 170 | * @param p the desired probability |
|
| 171 | * @return the largest x such that P(X ≤ x) <= p |
|
| 172 | * @throws MathException if the inverse cumulative probability can not be |
|
| 173 | * computed due to convergence or other numerical errors. |
|
| 174 | * @throws IllegalArgumentException if p < 0 or p > 1 |
|
| 175 | */ |
|
| 176 | public int inverseCumulativeProbability(final double p) throws MathException { |
|
| 177 | // handle extreme values explicitly |
|
| 178 | 36 | if (p == 0) { |
| 179 | 2 | return -1; |
| 180 | } |
|
| 181 | 34 | if (p == 1) { |
| 182 | 2 | return Integer.MAX_VALUE; |
| 183 | } |
|
| 184 | ||
| 185 | // use default bisection impl |
|
| 186 | 32 | return super.inverseCumulativeProbability(p); |
| 187 | } |
|
| 188 | } |