| Classes in this File | Line Coverage | Branch Coverage | Complexity | ||||||||
| ChiSquaredDistributionImpl |
|
| 1.6;1.6 |
| 1 | /* |
|
| 2 | * Copyright 2003-2004 The Apache Software Foundation. |
|
| 3 | * |
|
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
|
| 5 | * you may not use this file except in compliance with the License. |
|
| 6 | * You may obtain a copy of the License at |
|
| 7 | * |
|
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
|
| 9 | * |
|
| 10 | * Unless required by applicable law or agreed to in writing, software |
|
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
|
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
| 13 | * See the License for the specific language governing permissions and |
|
| 14 | * limitations under the License. |
|
| 15 | */ |
|
| 16 | package org.apache.commons.math.distribution; |
|
| 17 | ||
| 18 | import java.io.Serializable; |
|
| 19 | ||
| 20 | import org.apache.commons.math.MathException; |
|
| 21 | ||
| 22 | /** |
|
| 23 | * The default implementation of {@link ChiSquaredDistribution} |
|
| 24 | * |
|
| 25 | * @version $Revision$ $Date: 2005-02-26 05:11:52 -0800 (Sat, 26 Feb 2005) $ |
|
| 26 | */ |
|
| 27 | public class ChiSquaredDistributionImpl |
|
| 28 | extends AbstractContinuousDistribution |
|
| 29 | implements ChiSquaredDistribution, Serializable { |
|
| 30 | ||
| 31 | /** Serializable version identifier */ |
|
| 32 | static final long serialVersionUID = -8352658048349159782L; |
|
| 33 | ||
| 34 | /** Internal Gamma distribution. */ |
|
| 35 | private GammaDistribution gamma; |
|
| 36 | ||
| 37 | /** |
|
| 38 | * Create a Chi-Squared distribution with the given degrees of freedom. |
|
| 39 | * @param degreesOfFreedom degrees of freedom. |
|
| 40 | */ |
|
| 41 | public ChiSquaredDistributionImpl(double degreesOfFreedom) { |
|
| 42 | 98 | super(); |
| 43 | 98 | setGamma(DistributionFactory.newInstance().createGammaDistribution( |
| 44 | degreesOfFreedom / 2.0, 2.0)); |
|
| 45 | 94 | } |
| 46 | ||
| 47 | /** |
|
| 48 | * Modify the degrees of freedom. |
|
| 49 | * @param degreesOfFreedom the new degrees of freedom. |
|
| 50 | */ |
|
| 51 | public void setDegreesOfFreedom(double degreesOfFreedom) { |
|
| 52 | 4 | getGamma().setAlpha(degreesOfFreedom / 2.0); |
| 53 | 2 | } |
| 54 | ||
| 55 | /** |
|
| 56 | * Access the degrees of freedom. |
|
| 57 | * @return the degrees of freedom. |
|
| 58 | */ |
|
| 59 | public double getDegreesOfFreedom() { |
|
| 60 | 64 | return getGamma().getAlpha() * 2.0; |
| 61 | } |
|
| 62 | ||
| 63 | /** |
|
| 64 | * For this disbution, X, this method returns P(X < x). |
|
| 65 | * @param x the value at which the CDF is evaluated. |
|
| 66 | * @return CDF for this distribution. |
|
| 67 | * @throws MathException if the cumulative probability can not be |
|
| 68 | * computed due to convergence or other numerical errors. |
|
| 69 | */ |
|
| 70 | public double cumulativeProbability(double x) throws MathException { |
|
| 71 | 842 | return getGamma().cumulativeProbability(x); |
| 72 | } |
|
| 73 | ||
| 74 | /** |
|
| 75 | * For this distribution, X, this method returns the critical point x, such |
|
| 76 | * that P(X < x) = <code>p</code>. |
|
| 77 | * <p> |
|
| 78 | * Returns 0 for p=0 and <code>Double.POSITIVE_INFINITY</code> for p=1. |
|
| 79 | * |
|
| 80 | * @param p the desired probability |
|
| 81 | * @return x, such that P(X < x) = <code>p</code> |
|
| 82 | * @throws MathException if the inverse cumulative probability can not be |
|
| 83 | * computed due to convergence or other numerical errors. |
|
| 84 | * @throws IllegalArgumentException if <code>p</code> is not a valid |
|
| 85 | * probability. |
|
| 86 | */ |
|
| 87 | public double inverseCumulativeProbability(final double p) |
|
| 88 | throws MathException { |
|
| 89 | 48 | if (p == 0) { |
| 90 | 2 | return 0d; |
| 91 | } |
|
| 92 | 46 | if (p == 1) { |
| 93 | 2 | return Double.POSITIVE_INFINITY; |
| 94 | } |
|
| 95 | 44 | return super.inverseCumulativeProbability(p); |
| 96 | } |
|
| 97 | ||
| 98 | /** |
|
| 99 | * Access the domain value lower bound, based on <code>p</code>, used to |
|
| 100 | * bracket a CDF root. This method is used by |
|
| 101 | * {@link #inverseCumulativeProbability(double)} to find critical values. |
|
| 102 | * |
|
| 103 | * @param p the desired probability for the critical value |
|
| 104 | * @return domain value lower bound, i.e. |
|
| 105 | * P(X < <i>lower bound</i>) < <code>p</code> |
|
| 106 | */ |
|
| 107 | protected double getDomainLowerBound(double p) { |
|
| 108 | 40 | return Double.MIN_VALUE * getGamma().getBeta(); |
| 109 | } |
|
| 110 | ||
| 111 | /** |
|
| 112 | * Access the domain value upper bound, based on <code>p</code>, used to |
|
| 113 | * bracket a CDF root. This method is used by |
|
| 114 | * {@link #inverseCumulativeProbability(double)} to find critical values. |
|
| 115 | * |
|
| 116 | * @param p the desired probability for the critical value |
|
| 117 | * @return domain value upper bound, i.e. |
|
| 118 | * P(X < <i>upper bound</i>) > <code>p</code> |
|
| 119 | */ |
|
| 120 | protected double getDomainUpperBound(double p) { |
|
| 121 | // NOTE: chi squared is skewed to the left |
|
| 122 | // NOTE: therefore, P(X < μ) > .5 |
|
| 123 | ||
| 124 | double ret; |
|
| 125 | ||
| 126 | 40 | if (p < .5) { |
| 127 | // use mean |
|
| 128 | 20 | ret = getDegreesOfFreedom(); |
| 129 | } else { |
|
| 130 | // use max |
|
| 131 | 20 | ret = Double.MAX_VALUE; |
| 132 | } |
|
| 133 | ||
| 134 | 40 | return ret; |
| 135 | } |
|
| 136 | ||
| 137 | /** |
|
| 138 | * Access the initial domain value, based on <code>p</code>, used to |
|
| 139 | * bracket a CDF root. This method is used by |
|
| 140 | * {@link #inverseCumulativeProbability(double)} to find critical values. |
|
| 141 | * |
|
| 142 | * @param p the desired probability for the critical value |
|
| 143 | * @return initial domain value |
|
| 144 | */ |
|
| 145 | protected double getInitialDomain(double p) { |
|
| 146 | // NOTE: chi squared is skewed to the left |
|
| 147 | // NOTE: therefore, P(X < μ) > .5 |
|
| 148 | ||
| 149 | double ret; |
|
| 150 | ||
| 151 | 40 | if (p < .5) { |
| 152 | // use 1/2 mean |
|
| 153 | 20 | ret = getDegreesOfFreedom() * .5; |
| 154 | } else { |
|
| 155 | // use mean |
|
| 156 | 20 | ret = getDegreesOfFreedom(); |
| 157 | } |
|
| 158 | ||
| 159 | 40 | return ret; |
| 160 | } |
|
| 161 | ||
| 162 | /** |
|
| 163 | * Modify the Gamma distribution. |
|
| 164 | * @param gamma the new distribution. |
|
| 165 | */ |
|
| 166 | private void setGamma(GammaDistribution gamma) { |
|
| 167 | 94 | this.gamma = gamma; |
| 168 | 94 | } |
| 169 | ||
| 170 | /** |
|
| 171 | * Access the Gamma distribution. |
|
| 172 | * @return the internal Gamma distribution. |
|
| 173 | */ |
|
| 174 | private GammaDistribution getGamma() { |
|
| 175 | 950 | return gamma; |
| 176 | } |
|
| 177 | } |