| Classes in this File | Line Coverage | Branch Coverage | Complexity | ||||||||
| Kurtosis |
|
| 2.142857142857143;2.143 |
| 1 | /* |
|
| 2 | * Copyright 2003-2004 The Apache Software Foundation. |
|
| 3 | * |
|
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
|
| 5 | * you may not use this file except in compliance with the License. |
|
| 6 | * You may obtain a copy of the License at |
|
| 7 | * |
|
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
|
| 9 | * |
|
| 10 | * Unless required by applicable law or agreed to in writing, software |
|
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
|
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
| 13 | * See the License for the specific language governing permissions and |
|
| 14 | * limitations under the License. |
|
| 15 | */ |
|
| 16 | package org.apache.commons.math.stat.descriptive.moment; |
|
| 17 | ||
| 18 | import org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic; |
|
| 19 | ||
| 20 | /** |
|
| 21 | * Computes the Kurtosis of the available values. |
|
| 22 | * <p> |
|
| 23 | * We use the following (unbiased) formula to define kurtosis: |
|
| 24 | * <p> |
|
| 25 | * kurtosis = { [n(n+1) / (n -1)(n - 2)(n-3)] sum[(x_i - mean)^4] / std^4 } - [3(n-1)^2 / (n-2)(n-3)] |
|
| 26 | * <p> |
|
| 27 | * where n is the number of values, mean is the {@link Mean} and std is the |
|
| 28 | * {@link StandardDeviation} |
|
| 29 | * <p> |
|
| 30 | * Note that this statistic is undefined for n < 4. <code>Double.Nan</code> |
|
| 31 | * is returned when there is not sufficient data to compute the statistic. |
|
| 32 | * <p> |
|
| 33 | * <strong>Note that this implementation is not synchronized.</strong> If |
|
| 34 | * multiple threads access an instance of this class concurrently, and at least |
|
| 35 | * one of the threads invokes the <code>increment()</code> or |
|
| 36 | * <code>clear()</code> method, it must be synchronized externally. |
|
| 37 | * |
|
| 38 | * @version $Revision$ $Date: 2005-02-26 05:11:52 -0800 (Sat, 26 Feb 2005) $ |
|
| 39 | */ |
|
| 40 | public class Kurtosis extends AbstractStorelessUnivariateStatistic { |
|
| 41 | ||
| 42 | /** Serializable version identifier */ |
|
| 43 | static final long serialVersionUID = 2784465764798260919L; |
|
| 44 | ||
| 45 | /**Fourth Moment on which this statistic is based */ |
|
| 46 | protected FourthMoment moment; |
|
| 47 | ||
| 48 | /** |
|
| 49 | * Determines whether or not this statistic can be incremented or cleared. |
|
| 50 | * <p> |
|
| 51 | * Statistics based on (constructed from) external moments cannot |
|
| 52 | * be incremented or cleared. |
|
| 53 | */ |
|
| 54 | protected boolean incMoment; |
|
| 55 | ||
| 56 | /** |
|
| 57 | * Construct a Kurtosis |
|
| 58 | */ |
|
| 59 | 32 | public Kurtosis() { |
| 60 | 32 | incMoment = true; |
| 61 | 32 | moment = new FourthMoment(); |
| 62 | 32 | } |
| 63 | ||
| 64 | /** |
|
| 65 | * Construct a Kurtosis from an external moment |
|
| 66 | * |
|
| 67 | * @param m4 external Moment |
|
| 68 | */ |
|
| 69 | 2 | public Kurtosis(final FourthMoment m4) { |
| 70 | 2 | incMoment = false; |
| 71 | 2 | this.moment = m4; |
| 72 | 2 | } |
| 73 | ||
| 74 | /** |
|
| 75 | * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#increment(double) |
|
| 76 | */ |
|
| 77 | public void increment(final double d) { |
|
| 78 | 168 | if (incMoment) { |
| 79 | 168 | moment.increment(d); |
| 80 | } else { |
|
| 81 | 0 | throw new IllegalStateException |
| 82 | ("Statistics constructed from external moments cannot be incremented"); |
|
| 83 | } |
|
| 84 | 168 | } |
| 85 | ||
| 86 | /** |
|
| 87 | * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#getResult() |
|
| 88 | */ |
|
| 89 | public double getResult() { |
|
| 90 | 98 | double kurtosis = Double.NaN; |
| 91 | 98 | if (moment.getN() > 3) { |
| 92 | 20 | double variance = moment.m2 / (double) (moment.n - 1); |
| 93 | 20 | if (moment.n <= 3 || variance < 10E-20) { |
| 94 | 2 | kurtosis = 0.0; |
| 95 | } else { |
|
| 96 | 18 | double n = (double) moment.n; |
| 97 | 18 | kurtosis = |
| 98 | (n * (n + 1) * moment.m4 - |
|
| 99 | 3 * moment.m2 * moment.m2 * (n - 1)) / |
|
| 100 | ((n - 1) * (n -2) * (n -3) * variance * variance); |
|
| 101 | } |
|
| 102 | } |
|
| 103 | 98 | return kurtosis; |
| 104 | } |
|
| 105 | ||
| 106 | /** |
|
| 107 | * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#clear() |
|
| 108 | */ |
|
| 109 | public void clear() { |
|
| 110 | 22 | if (incMoment) { |
| 111 | 22 | moment.clear(); |
| 112 | } else { |
|
| 113 | 0 | throw new IllegalStateException |
| 114 | ("Statistics constructed from external moments cannot be cleared"); |
|
| 115 | } |
|
| 116 | 22 | } |
| 117 | ||
| 118 | /** |
|
| 119 | * @see org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic#getN() |
|
| 120 | */ |
|
| 121 | public long getN() { |
|
| 122 | 70 | return moment.getN(); |
| 123 | } |
|
| 124 | ||
| 125 | /* UnvariateStatistic Approach */ |
|
| 126 | ||
| 127 | /** |
|
| 128 | * Returns the kurtosis of the entries in the specified portion of the |
|
| 129 | * input array. |
|
| 130 | * <p> |
|
| 131 | * See {@link Kurtosis} for details on the computing algorithm. |
|
| 132 | * <p> |
|
| 133 | * Throws <code>IllegalArgumentException</code> if the array is null. |
|
| 134 | * |
|
| 135 | * @param values the input array |
|
| 136 | * @param begin index of the first array element to include |
|
| 137 | * @param length the number of elements to include |
|
| 138 | * @return the kurtosis of the values or Double.NaN if length is less than |
|
| 139 | * 4 |
|
| 140 | * @throws IllegalArgumentException if the input array is null or the array |
|
| 141 | * index parameters are not valid |
|
| 142 | */ |
|
| 143 | public double evaluate(final double[] values,final int begin, final int length) { |
|
| 144 | // Initialize the kurtosis |
|
| 145 | 30 | double kurt = Double.NaN; |
| 146 | ||
| 147 | 30 | if (test(values, begin, length) && length > 3) { |
| 148 | ||
| 149 | // Compute the mean and standard deviation |
|
| 150 | 18 | Variance variance = new Variance(); |
| 151 | 18 | variance.incrementAll(values, begin, length); |
| 152 | 18 | double mean = variance.moment.m1; |
| 153 | 18 | double stdDev = Math.sqrt(variance.getResult()); |
| 154 | ||
| 155 | // Sum the ^4 of the distance from the mean divided by the |
|
| 156 | // standard deviation |
|
| 157 | 18 | double accum3 = 0.0; |
| 158 | 378 | for (int i = begin; i < begin + length; i++) { |
| 159 | 360 | accum3 += Math.pow((values[i] - mean), 4.0); |
| 160 | } |
|
| 161 | 18 | accum3 /= Math.pow(stdDev, 4.0d); |
| 162 | ||
| 163 | // Get N |
|
| 164 | 18 | double n0 = length; |
| 165 | ||
| 166 | 18 | double coefficientOne = |
| 167 | (n0 * (n0 + 1)) / ((n0 - 1) * (n0 - 2) * (n0 - 3)); |
|
| 168 | 18 | double termTwo = |
| 169 | ((3 * Math.pow(n0 - 1, 2.0)) / ((n0 - 2) * (n0 - 3))); |
|
| 170 | ||
| 171 | // Calculate kurtosis |
|
| 172 | 18 | kurt = (coefficientOne * accum3) - termTwo; |
| 173 | } |
|
| 174 | 30 | return kurt; |
| 175 | } |
|
| 176 | ||
| 177 | } |