A B C D E F G H I K L M N O P R S T U V W

A

ADDITIVE_MODE - Static variable in class org.apache.commons.math.util.ResizableDoubleArray
additive expansion mode
AbstractContinuousDistribution - class org.apache.commons.math.distribution.AbstractContinuousDistribution.
Base class for continuous distributions.
AbstractContinuousDistribution() - Constructor for class org.apache.commons.math.distribution.AbstractContinuousDistribution
Default constructor.
AbstractDistribution - class org.apache.commons.math.distribution.AbstractDistribution.
Base class for probability distributions.
AbstractDistribution() - Constructor for class org.apache.commons.math.distribution.AbstractDistribution
Default constructor.
AbstractIntegerDistribution - class org.apache.commons.math.distribution.AbstractIntegerDistribution.
Base class for integer-valued discrete distributions.
AbstractIntegerDistribution() - Constructor for class org.apache.commons.math.distribution.AbstractIntegerDistribution
Default constructor.
AbstractStorelessUnivariateStatistic - class org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic.
Abstract Implementation for the StorelessUnivariateStatistic interface.
AbstractStorelessUnivariateStatistic() - Constructor for class org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic
 
AbstractUnivariateStatistic - class org.apache.commons.math.stat.descriptive.AbstractUnivariateStatistic.
Abstract base class for all implementations of the UnivariateStatistic interface.
AbstractUnivariateStatistic() - Constructor for class org.apache.commons.math.stat.descriptive.AbstractUnivariateStatistic
 
abs() - Method in class org.apache.commons.math.complex.Complex
Return the absolute value of this complex number.
absoluteAccuracy - Variable in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Maximum absolute error.
acos(Complex) - Static method in class org.apache.commons.math.complex.ComplexUtils
Compute the inverse cosine for the given complex argument.
add(Complex) - Method in class org.apache.commons.math.complex.Complex
Return the sum of this complex number and the given complex number.
add(BigMatrix) - Method in interface org.apache.commons.math.linear.BigMatrix
Compute the sum of this and m.
add(BigMatrix) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Compute the sum of this and m.
add(RealMatrix) - Method in interface org.apache.commons.math.linear.RealMatrix
Compute the sum of this and m.
add(RealMatrix) - Method in class org.apache.commons.math.linear.RealMatrixImpl
Compute the sum of this and m.
addData(double, double) - Method in class org.apache.commons.math.stat.regression.SimpleRegression
Adds the observation (x,y) to the regression data set.
addData(double[][]) - Method in class org.apache.commons.math.stat.regression.SimpleRegression
Adds the observations represented by the elements in data.
addElement(double) - Method in interface org.apache.commons.math.util.DoubleArray
Adds an element to the end of this expandable array
addElement(double) - Method in class org.apache.commons.math.util.ResizableDoubleArray
Adds an element to the end of this expandable array.
addElementRolling(double) - Method in interface org.apache.commons.math.util.DoubleArray
Adds an element to the end of the array and removes the first element in the array.
addElementRolling(double) - Method in class org.apache.commons.math.util.ResizableDoubleArray
Adds an element to the end of the array and removes the first element in the array.
addValue(Object) - Method in class org.apache.commons.math.stat.Frequency
Adds 1 to the frequency count for v.
addValue(int) - Method in class org.apache.commons.math.stat.Frequency
Adds 1 to the frequency count for v.
addValue(Integer) - Method in class org.apache.commons.math.stat.Frequency
Adds 1 to the frequency count for v.
addValue(long) - Method in class org.apache.commons.math.stat.Frequency
Adds 1 to the frequency count for v.
addValue(char) - Method in class org.apache.commons.math.stat.Frequency
Adds 1 to the frequency count for v.
addValue(double) - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Adds the value to the set of numbers
addValue(double) - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatisticsImpl
 
addValue(double) - Method in class org.apache.commons.math.stat.descriptive.SummaryStatistics
Adds the value to the data to be summarized
addValue(double) - Method in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
Add a value to the data
apply(UnivariateStatistic) - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Apply the given statistic to the data associated with this set of statistics.
apply(UnivariateStatistic) - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatisticsImpl
Apply the given statistic to this univariate collection.
asin(Complex) - Static method in class org.apache.commons.math.complex.ComplexUtils
Compute the inverse sine for the given complex argument.
atan(Complex) - Static method in class org.apache.commons.math.complex.ComplexUtils
Compute the inverse tangent for the given complex argument.

B

Beta - class org.apache.commons.math.special.Beta.
This is a utility class that provides computation methods related to the Beta family of functions.
BigMatrix - interface org.apache.commons.math.linear.BigMatrix.
Interface defining a real-valued matrix with basic algebraic operations, using BigDecimal representations for the entries.
BigMatrixImpl - class org.apache.commons.math.linear.BigMatrixImpl.
Implementation for BigMatrix using a BigDecimal[][] array to store entries and LU decompostion to support linear system solution and inverse.
BigMatrixImpl() - Constructor for class org.apache.commons.math.linear.BigMatrixImpl
Creates a matrix with no data
BigMatrixImpl(int, int) - Constructor for class org.apache.commons.math.linear.BigMatrixImpl
Create a new BigMatrix with the supplied row and column dimensions.
BigMatrixImpl(BigDecimal[][]) - Constructor for class org.apache.commons.math.linear.BigMatrixImpl
Create a new BigMatrix using the data as the underlying data array.
BigMatrixImpl(double[][]) - Constructor for class org.apache.commons.math.linear.BigMatrixImpl
Create a new BigMatrix using the data as the underlying data array.
BigMatrixImpl(String[][]) - Constructor for class org.apache.commons.math.linear.BigMatrixImpl
Create a new BigMatrix using the values represented by the strings in data as the underlying data array.
BigMatrixImpl(BigDecimal[]) - Constructor for class org.apache.commons.math.linear.BigMatrixImpl
Create a new (column) BigMatrix using v as the data for the unique column of the v.length x 1 matrix created.
BinomialDistribution - interface org.apache.commons.math.distribution.BinomialDistribution.
The Binomial Distribution.
BinomialDistributionImpl - class org.apache.commons.math.distribution.BinomialDistributionImpl.
The default implementation of BinomialDistribution.
BinomialDistributionImpl(int, double) - Constructor for class org.apache.commons.math.distribution.BinomialDistributionImpl
Create a binomial distribution with the given number of trials and probability of success.
BisectionSolver - class org.apache.commons.math.analysis.BisectionSolver.
Implements the bisection algorithm for finding zeros of univariate real functions.
BisectionSolver(UnivariateRealFunction) - Constructor for class org.apache.commons.math.analysis.BisectionSolver
Construct a solver for the given function.
BrentSolver - class org.apache.commons.math.analysis.BrentSolver.
Implements the Brent algorithm for finding zeros of real univariate functions.
BrentSolver(UnivariateRealFunction) - Constructor for class org.apache.commons.math.analysis.BrentSolver
Construct a solver for the given function.
binomialCoefficient(int, int) - Static method in class org.apache.commons.math.util.MathUtils
Returns an exact representation of the Binomial Coefficient, "n choose k", the number of k-element subsets that can be selected from an n-element set.
binomialCoefficientDouble(int, int) - Static method in class org.apache.commons.math.util.MathUtils
Returns a double representation of the Binomial Coefficient, "n choose k", the number of k-element subsets that can be selected from an n-element set.
binomialCoefficientLog(int, int) - Static method in class org.apache.commons.math.util.MathUtils
Returns the natural log of the Binomial Coefficient, "n choose k", the number of k-element subsets that can be selected from an n-element set.
bracket(UnivariateRealFunction, double, double, double) - Static method in class org.apache.commons.math.analysis.UnivariateRealSolverUtils
This method attempts to find two values a and b satisfying lowerBound <= a < initial < b <= upperBound f(a) * f(b) < 0 If f is continuous on [a,b], this means that a and b bracket a root of f.
bracket(UnivariateRealFunction, double, double, double, int) - Static method in class org.apache.commons.math.analysis.UnivariateRealSolverUtils
This method attempts to find two values a and b satisfying lowerBound <= a < initial < b <= upperBound f(a) * f(b) < 0 If f is continuous on [a,b], this means that a and b bracket a root of f.

C

CONSTANT_MODE - Static variable in class org.apache.commons.math.random.ValueServer
Always return mu
ChiSquareTest - interface org.apache.commons.math.stat.inference.ChiSquareTest.
An interface for Chi-Square tests.
ChiSquareTestImpl - class org.apache.commons.math.stat.inference.ChiSquareTestImpl.
Implements Chi-Square test statistics defined in the ChiSquareTest interface.
ChiSquareTestImpl() - Constructor for class org.apache.commons.math.stat.inference.ChiSquareTestImpl
Construct a ChiSquareTestImpl
ChiSquaredDistribution - interface org.apache.commons.math.distribution.ChiSquaredDistribution.
The Chi-Squared Distribution.
ChiSquaredDistributionImpl - class org.apache.commons.math.distribution.ChiSquaredDistributionImpl.
The default implementation of ChiSquaredDistribution
ChiSquaredDistributionImpl(double) - Constructor for class org.apache.commons.math.distribution.ChiSquaredDistributionImpl
Create a Chi-Squared distribution with the given degrees of freedom.
Complex - class org.apache.commons.math.complex.Complex.
Representation of a Complex number - a number which has both a real and imaginary part.
Complex(double, double) - Constructor for class org.apache.commons.math.complex.Complex
Create a complex number given the real and imaginary parts.
ComplexFormat - class org.apache.commons.math.complex.ComplexFormat.
Formats a Complex number in cartesian format "Re(c) + Im(c)i".
ComplexFormat() - Constructor for class org.apache.commons.math.complex.ComplexFormat
Create an instance with the default imaginary character, 'i', and the default number format for both real and imaginary parts.
ComplexFormat(NumberFormat) - Constructor for class org.apache.commons.math.complex.ComplexFormat
Create an instance with a custom number format for both real and imaginary parts.
ComplexFormat(NumberFormat, NumberFormat) - Constructor for class org.apache.commons.math.complex.ComplexFormat
Create an instance with a custom number format for the real part and a custom number format for the imaginary part.
ComplexFormat(String) - Constructor for class org.apache.commons.math.complex.ComplexFormat
Create an instance with a custom imaginary character, and the default number format for both real and imaginary parts.
ComplexFormat(String, NumberFormat) - Constructor for class org.apache.commons.math.complex.ComplexFormat
Create an instance with a custom imaginary character, and a custom number format for both real and imaginary parts.
ComplexFormat(String, NumberFormat, NumberFormat) - Constructor for class org.apache.commons.math.complex.ComplexFormat
Create an instance with a custom imaginary character, a custom number format for the real part, and a custom number format for the imaginary part.
ComplexUtils - class org.apache.commons.math.complex.ComplexUtils.
Implementations of various transcendental functions for Complex arguments.
ContinuedFraction - class org.apache.commons.math.util.ContinuedFraction.
Provides a generic means to evaluate continued fractions.
ContinuedFraction() - Constructor for class org.apache.commons.math.util.ContinuedFraction
Default constructor.
ContinuousDistribution - interface org.apache.commons.math.distribution.ContinuousDistribution.
Base interface for continuous distributions.
ConvergenceException - exception org.apache.commons.math.ConvergenceException.
Error thrown when a numerical computation can not be performed because the numerical result failed to converge to a finite value.
ConvergenceException() - Constructor for class org.apache.commons.math.ConvergenceException
Default constructor.
ConvergenceException(String) - Constructor for class org.apache.commons.math.ConvergenceException
Construct an exception with the given message.
ConvergenceException(String, Throwable) - Constructor for class org.apache.commons.math.ConvergenceException
Construct an exception with the given message and root cause.
ConvergenceException(Throwable) - Constructor for class org.apache.commons.math.ConvergenceException
Create an exception with a given root cause.
checkContractExpand(float, float) - Method in class org.apache.commons.math.util.ResizableDoubleArray
Checks the expansion factor and the contraction criteria and throws an IllegalArgumentException if the contractionCriteria is less than the expansionCriteria
chiSquare(double[], long[]) - Method in interface org.apache.commons.math.stat.inference.ChiSquareTest
Computes the Chi-Square statistic comparing observed and expected freqeuncy counts.
chiSquare(long[][]) - Method in interface org.apache.commons.math.stat.inference.ChiSquareTest
Computes the Chi-Square statistic associated with a chi-square test of independence based on the input counts array, viewed as a two-way table.
chiSquare(double[], long[]) - Method in class org.apache.commons.math.stat.inference.ChiSquareTestImpl
 
chiSquare(long[][]) - Method in class org.apache.commons.math.stat.inference.ChiSquareTestImpl
 
chiSquareTest(double[], long[]) - Method in interface org.apache.commons.math.stat.inference.ChiSquareTest
Returns the observed significance level, or p-value, associated with a Chi-square goodness of fit test comparing the observed frequency counts to those in the expected array.
chiSquareTest(double[], long[], double) - Method in interface org.apache.commons.math.stat.inference.ChiSquareTest
Performs a Chi-square goodness of fit test evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance level alpha.
chiSquareTest(long[][]) - Method in interface org.apache.commons.math.stat.inference.ChiSquareTest
Returns the observed significance level, or p-value, associated with a chi-square test of independence based on the input counts array, viewed as a two-way table.
chiSquareTest(long[][], double) - Method in interface org.apache.commons.math.stat.inference.ChiSquareTest
Performs a chi-square test of independence evaluating the null hypothesis that the classifications represented by the counts in the columns of the input 2-way table are independent of the rows, with significance level alpha.
chiSquareTest(double[], long[]) - Method in class org.apache.commons.math.stat.inference.ChiSquareTestImpl
 
chiSquareTest(double[], long[], double) - Method in class org.apache.commons.math.stat.inference.ChiSquareTestImpl
 
chiSquareTest(long[][]) - Method in class org.apache.commons.math.stat.inference.ChiSquareTestImpl
 
chiSquareTest(long[][], double) - Method in class org.apache.commons.math.stat.inference.ChiSquareTestImpl
 
classes() - Method in class org.apache.commons.math.util.TransformerMap
Returns the Set of Classes used as keys in the map.
clear() - Method in class org.apache.commons.math.stat.Frequency
Clears the frequency table
clear() - Method in class org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic
 
clear() - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Resets all statistics and storage
clear() - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatisticsImpl
 
clear() - Method in interface org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic
Clears the internal state of the Statistic
clear() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatistics
Resets all statistics
clear() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
Resets all statistics and storage
clear() - Method in class org.apache.commons.math.stat.descriptive.moment.FirstMoment
 
clear() - Method in class org.apache.commons.math.stat.descriptive.moment.FourthMoment
 
clear() - Method in class org.apache.commons.math.stat.descriptive.moment.GeometricMean
 
clear() - Method in class org.apache.commons.math.stat.descriptive.moment.Kurtosis
 
clear() - Method in class org.apache.commons.math.stat.descriptive.moment.Mean
 
clear() - Method in class org.apache.commons.math.stat.descriptive.moment.SecondMoment
 
clear() - Method in class org.apache.commons.math.stat.descriptive.moment.Skewness
 
clear() - Method in class org.apache.commons.math.stat.descriptive.moment.StandardDeviation
 
clear() - Method in class org.apache.commons.math.stat.descriptive.moment.ThirdMoment
 
clear() - Method in class org.apache.commons.math.stat.descriptive.moment.Variance
 
clear() - Method in class org.apache.commons.math.stat.descriptive.rank.Max
 
clear() - Method in class org.apache.commons.math.stat.descriptive.rank.Min
 
clear() - Method in class org.apache.commons.math.stat.descriptive.summary.Product
 
clear() - Method in class org.apache.commons.math.stat.descriptive.summary.Sum
 
clear() - Method in class org.apache.commons.math.stat.descriptive.summary.SumOfLogs
 
clear() - Method in class org.apache.commons.math.stat.descriptive.summary.SumOfSquares
 
clear() - Method in class org.apache.commons.math.stat.regression.SimpleRegression
Clears all data from the model.
clear() - Method in interface org.apache.commons.math.util.DoubleArray
Clear the double array
clear() - Method in class org.apache.commons.math.util.ResizableDoubleArray
Clear the array, reset the size to the initialCapacity and the number of elements to zero.
clear() - Method in class org.apache.commons.math.util.TransformerMap
Clears all the Class to Transformer mappings.
clearResult() - Method in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Convenience function for implementations.
closeReplayFile() - Method in class org.apache.commons.math.random.ValueServer
Closes valuesFileURL after use in REPLAY_MODE.
computeDistribution() - Method in class org.apache.commons.math.random.ValueServer
Computes the empirical distribution using values from the file in valuesFileURL, using the default number of bins.
computeDistribution(int) - Method in class org.apache.commons.math.random.ValueServer
Computes the empirical distribution using values from the file in valuesFileURL and binCount bins.
conjugate() - Method in class org.apache.commons.math.complex.Complex
Return the conjugate of this complex number.
containsClass(Class) - Method in class org.apache.commons.math.util.TransformerMap
Tests if a Class is present in the TransformerMap.
containsTransformer(NumberTransformer) - Method in class org.apache.commons.math.util.TransformerMap
Tests if a NumberTransformer is present in the TransformerMap.
contract() - Method in class org.apache.commons.math.util.ResizableDoubleArray
Contracts the storage array to the (size of the element set) + 1 - to avoid a zero length array.
contractionCriteria - Variable in class org.apache.commons.math.util.ResizableDoubleArray
The contraction criteria determines when the internal array will be contracted to fit the number of elements contained in the element array + 1.
copy() - Method in interface org.apache.commons.math.linear.BigMatrix
Returns a (deep) copy of this.
copy() - Method in class org.apache.commons.math.linear.BigMatrixImpl
Create a new BigMatrix which is a copy of this.
copy() - Method in interface org.apache.commons.math.linear.RealMatrix
Returns a (deep) copy of this.
copy() - Method in class org.apache.commons.math.linear.RealMatrixImpl
Create a new RealMatrix which is a copy of this.
cos(Complex) - Static method in class org.apache.commons.math.complex.ComplexUtils
Compute the cosine for the given complex argument.
cosh(Complex) - Static method in class org.apache.commons.math.complex.ComplexUtils
Compute the hyperbolic cosine for the given complex argument.
cosh(double) - Static method in class org.apache.commons.math.util.MathUtils
Returns the hyperbolic cosine of x.
createBigMatrix(double[][]) - Static method in class org.apache.commons.math.linear.MatrixUtils
Returns a BigMatrix whose entries are the the values in the the input array.
createBigMatrix(BigDecimal[][]) - Static method in class org.apache.commons.math.linear.MatrixUtils
Returns a BigMatrix whose entries are the the values in the the input array.
createBigMatrix(String[][]) - Static method in class org.apache.commons.math.linear.MatrixUtils
Returns a BigMatrix whose entries are the the values in the the input array.
createBinomialDistribution(int, double) - Method in class org.apache.commons.math.distribution.DistributionFactory
Create a binomial distribution with the given number of trials and probability of success.
createBinomialDistribution(int, double) - Method in class org.apache.commons.math.distribution.DistributionFactoryImpl
Create a binomial distribution with the given number of trials and probability of success.
createChiSquareDistribution(double) - Method in class org.apache.commons.math.distribution.DistributionFactory
Create a new chi-square distribution with the given degrees of freedom.
createChiSquareDistribution(double) - Method in class org.apache.commons.math.distribution.DistributionFactoryImpl
Create a new chi-square distribution with the given degrees of freedom.
createColumnBigMatrix(double[]) - Static method in class org.apache.commons.math.linear.MatrixUtils
Creates a column BigMatrix using the data from the input array.
createColumnBigMatrix(BigDecimal[]) - Static method in class org.apache.commons.math.linear.MatrixUtils
Creates a column BigMatrix using the data from the input array.
createColumnBigMatrix(String[]) - Static method in class org.apache.commons.math.linear.MatrixUtils
Creates a column BigMatrix using the data from the input array.
createColumnRealMatrix(double[]) - Static method in class org.apache.commons.math.linear.MatrixUtils
Creates a column RealMatrix using the data from the input array.
createExponentialDistribution(double) - Method in class org.apache.commons.math.distribution.DistributionFactory
Create a new exponential distribution with the given degrees of freedom.
createExponentialDistribution(double) - Method in class org.apache.commons.math.distribution.DistributionFactoryImpl
Create a new exponential distribution with the given degrees of freedom.
createFDistribution(double, double) - Method in class org.apache.commons.math.distribution.DistributionFactory
Create a new F-distribution with the given degrees of freedom.
createFDistribution(double, double) - Method in class org.apache.commons.math.distribution.DistributionFactoryImpl
Create a new F-distribution with the given degrees of freedom.
createGammaDistribution(double, double) - Method in class org.apache.commons.math.distribution.DistributionFactory
Create a new gamma distribution with the given shape and scale parameters.
createGammaDistribution(double, double) - Method in class org.apache.commons.math.distribution.DistributionFactoryImpl
Create a new gamma distribution the given shape and scale parameters.
createHypergeometricDistribution(int, int, int) - Method in class org.apache.commons.math.distribution.DistributionFactory
Create a new hypergeometric distribution with the given the population size, the number of successes in the population, and the sample size.
createHypergeometricDistribution(int, int, int) - Method in class org.apache.commons.math.distribution.DistributionFactoryImpl
Create a new hypergeometric distribution with the given the population size, the number of successes in the population, and the sample size.
createNormalDistribution(double, double) - Method in class org.apache.commons.math.distribution.DistributionFactory
Create a new normal distribution with the given mean and standard deviation.
createNormalDistribution() - Method in class org.apache.commons.math.distribution.DistributionFactory
Create a new normal distribution with mean zero and standard deviation one.
createNormalDistribution(double, double) - Method in class org.apache.commons.math.distribution.DistributionFactoryImpl
Create a new normal distribution with the given mean and standard deviation.
createNormalDistribution() - Method in class org.apache.commons.math.distribution.DistributionFactoryImpl
Create a new normal distribution with the mean zero and standard deviation one.
createPoissonDistribution(double) - Method in class org.apache.commons.math.distribution.DistributionFactory
Create a new Poisson distribution with poisson parameter lambda.
createPoissonDistribution(double) - Method in class org.apache.commons.math.distribution.DistributionFactoryImpl
Create a new Poisson distribution with poisson parameter lambda.
createRealMatrix(double[][]) - Static method in class org.apache.commons.math.linear.MatrixUtils
Returns a RealMatrix whose entries are the the values in the the input array.
createRowBigMatrix(double[]) - Static method in class org.apache.commons.math.linear.MatrixUtils
Creates a row BigMatrix using the data from the input array.
createRowBigMatrix(BigDecimal[]) - Static method in class org.apache.commons.math.linear.MatrixUtils
Creates a row BigMatrix using the data from the input array.
createRowBigMatrix(String[]) - Static method in class org.apache.commons.math.linear.MatrixUtils
Creates a row BigMatrix using the data from the input array.
createRowRealMatrix(double[]) - Static method in class org.apache.commons.math.linear.MatrixUtils
Creates a row RealMatrix using the data from the input array.
createTDistribution(double) - Method in class org.apache.commons.math.distribution.DistributionFactory
Create a new t distribution with the given degrees of freedom.
createTDistribution(double) - Method in class org.apache.commons.math.distribution.DistributionFactoryImpl
Create a new t distribution with the given degrees of freedom.
cumulativeProbability(double, double) - Method in class org.apache.commons.math.distribution.AbstractDistribution
For a random variable X whose values are distributed according to this distribution, this method returns P(x0 ≤ X ≤ x1).
cumulativeProbability(double) - Method in class org.apache.commons.math.distribution.AbstractIntegerDistribution
For a random variable X whose values are distributed according to this distribution, this method returns P(X ≤ x).
cumulativeProbability(int) - Method in class org.apache.commons.math.distribution.AbstractIntegerDistribution
For a random variable X whose values are distributed according to this distribution, this method returns P(X ≤ x).
cumulativeProbability(int, int) - Method in class org.apache.commons.math.distribution.AbstractIntegerDistribution
For a random variable X whose values are distributed according to this distribution, this method returns P(x0 ≤ X ≤ x1).
cumulativeProbability(int) - Method in class org.apache.commons.math.distribution.BinomialDistributionImpl
For this distribution, X, this method returns P(X ≤ x).
cumulativeProbability(double) - Method in class org.apache.commons.math.distribution.ChiSquaredDistributionImpl
For this disbution, X, this method returns P(X < x).
cumulativeProbability(double) - Method in interface org.apache.commons.math.distribution.Distribution
For a random variable X whose values are distributed according to this distribution, this method returns P(X ≤ x).
cumulativeProbability(double, double) - Method in interface org.apache.commons.math.distribution.Distribution
For a random variable X whose values are distributed according to this distribution, this method returns P(x0 ≤ X ≤ x1).
cumulativeProbability(double) - Method in class org.apache.commons.math.distribution.ExponentialDistributionImpl
For this disbution, X, this method returns P(X < x).
cumulativeProbability(double) - Method in class org.apache.commons.math.distribution.FDistributionImpl
For this disbution, X, this method returns P(X < x).
cumulativeProbability(double) - Method in class org.apache.commons.math.distribution.GammaDistributionImpl
For this disbution, X, this method returns P(X < x).
cumulativeProbability(int) - Method in class org.apache.commons.math.distribution.HypergeometricDistributionImpl
For this disbution, X, this method returns P(X ≤ x).
cumulativeProbability(int) - Method in interface org.apache.commons.math.distribution.IntegerDistribution
For a random variable X whose values are distributed according to this distribution, this method returns P(X ≤ x).
cumulativeProbability(int, int) - Method in interface org.apache.commons.math.distribution.IntegerDistribution
For this distribution, X, this method returns P(x0 ≤ X ≤ x1).
cumulativeProbability(double) - Method in class org.apache.commons.math.distribution.NormalDistributionImpl
For this disbution, X, this method returns P(X < x).
cumulativeProbability(int) - Method in class org.apache.commons.math.distribution.PoissonDistributionImpl
The probability distribution function P(X <= x) for a Poisson distribution.
cumulativeProbability(double) - Method in class org.apache.commons.math.distribution.TDistributionImpl
For this disbution, X, this method returns P(X < x).

D

DIGEST_MODE - Static variable in class org.apache.commons.math.random.ValueServer
Use empirical distribution
DefaultTransformer - class org.apache.commons.math.util.DefaultTransformer.
A Default NumberTransformer for java.lang.Numbers and Numeric Strings.
DefaultTransformer() - Constructor for class org.apache.commons.math.util.DefaultTransformer
 
DescriptiveStatistics - class org.apache.commons.math.stat.descriptive.DescriptiveStatistics.
Abstract factory class for univariate statistical summaries.
DescriptiveStatistics() - Constructor for class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
 
DescriptiveStatisticsImpl - class org.apache.commons.math.stat.descriptive.DescriptiveStatisticsImpl.
Default implementation of DescriptiveStatistics.
DescriptiveStatisticsImpl() - Constructor for class org.apache.commons.math.stat.descriptive.DescriptiveStatisticsImpl
Construct a DescriptiveStatisticsImpl with infinite window
DescriptiveStatisticsImpl(int) - Constructor for class org.apache.commons.math.stat.descriptive.DescriptiveStatisticsImpl
Construct a DescriptiveStatisticsImpl with finite window
DifferentiableUnivariateRealFunction - interface org.apache.commons.math.analysis.DifferentiableUnivariateRealFunction.
Extension of UnivariateRealFunction representing a differentiable univariate real function.
DiscreteDistribution - interface org.apache.commons.math.distribution.DiscreteDistribution.
Base interface for discrete distributions.
Distribution - interface org.apache.commons.math.distribution.Distribution.
Base interface for probability distributions.
DistributionFactory - class org.apache.commons.math.distribution.DistributionFactory.
This factory provids the means to create common statistical distributions.
DistributionFactory() - Constructor for class org.apache.commons.math.distribution.DistributionFactory
Default constructor.
DistributionFactoryImpl - class org.apache.commons.math.distribution.DistributionFactoryImpl.
A concrete distribution factory.
DistributionFactoryImpl() - Constructor for class org.apache.commons.math.distribution.DistributionFactoryImpl
Default constructor.
DoubleArray - interface org.apache.commons.math.util.DoubleArray.
Provides a standard interface for double arrays.
defaultAbsoluteAccuracy - Variable in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Default maximum absolute error.
defaultFunctionValueAccuracy - Variable in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Default maximum error of function.
defaultMaximalIterationCount - Variable in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Default maximum number of iterations.
defaultRelativeAccuracy - Variable in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Default maximum relative error.
degree() - Method in class org.apache.commons.math.analysis.PolynomialFunction
Returns the degree of the polynomial
derivative() - Method in interface org.apache.commons.math.analysis.DifferentiableUnivariateRealFunction
Returns the derivative of the function
derivative() - Method in class org.apache.commons.math.analysis.PolynomialFunction
Returns the derivative as a UnivariateRealFunction
derivative() - Method in class org.apache.commons.math.analysis.PolynomialSplineFunction
Returns the derivative of the polynomial spline function as a UnivariateRealFunction
dev - Variable in class org.apache.commons.math.stat.descriptive.moment.FirstMoment
Deviation of most recently added value from previous first moment.
df(double, double, double, double) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Computes approximate degrees of freedom for 2-sample t-test.
differentiate(double[]) - Static method in class org.apache.commons.math.analysis.PolynomialFunction
Returns the coefficients of the derivative of the polynomial with the given coefficients.
discardFrontElements(int) - Method in class org.apache.commons.math.util.ResizableDoubleArray
Discards the i initial elements of the array.
divide(Complex) - Method in class org.apache.commons.math.complex.Complex
Return the quotient of this complex number and the given complex number.

E

EXPONENTIAL_MODE - Static variable in class org.apache.commons.math.random.ValueServer
Exponential random deviates with mean = mu
EmpiricalDistribution - interface org.apache.commons.math.random.EmpiricalDistribution.
Represents an empirical probability distribution -- a probability distribution derived from observed data without making any assumptions about the functional form of the population distribution that the data come from.
EmpiricalDistributionImpl - class org.apache.commons.math.random.EmpiricalDistributionImpl.
Implements EmpiricalDistribution interface.
EmpiricalDistributionImpl() - Constructor for class org.apache.commons.math.random.EmpiricalDistributionImpl
Creates a new EmpiricalDistribution with the default bin count.
EmpiricalDistributionImpl(int) - Constructor for class org.apache.commons.math.random.EmpiricalDistributionImpl
Creates a new EmpiricalDistribution with the specified bin count.
Erf - class org.apache.commons.math.special.Erf.
This is a utility class that provides computation methods related to the error functions.
ExponentialDistribution - interface org.apache.commons.math.distribution.ExponentialDistribution.
The Exponential Distribution.
ExponentialDistributionImpl - class org.apache.commons.math.distribution.ExponentialDistributionImpl.
The default implementation of ExponentialDistribution
ExponentialDistributionImpl(double) - Constructor for class org.apache.commons.math.distribution.ExponentialDistributionImpl
Create a exponential distribution with the given mean.
eDA - Variable in class org.apache.commons.math.stat.descriptive.DescriptiveStatisticsImpl
Stored data values
equals(Object) - Method in class org.apache.commons.math.complex.Complex
Test for the equality of two Complex objects.
equals(Object) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns true iff object is a BigMatrixImpl instance with the same dimensions as this and all corresponding matrix entries are equal.
equals(Object) - Method in class org.apache.commons.math.linear.RealMatrixImpl
Returns true iff object is a RealMatrixImpl instance with the same dimensions as this and all corresponding matrix entries are equal.
equals(Object) - Method in class org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic
Returns true iff object is an AbstractStorelessUnivariateStatistic returning the same values as this for getResult() and getN()
equals(Object) - Method in class org.apache.commons.math.stat.descriptive.StatisticalSummaryValues
Returns true iff object is a StatisticalSummaryValues instance and all statistics have the same values as this.
equals(Object) - Method in class org.apache.commons.math.stat.descriptive.SummaryStatistics
Returns true iff object is a SummaryStatistics instance and all statistics have the same values as this.
equals(double, double) - Static method in class org.apache.commons.math.util.MathUtils
Returns true iff both arguments are NaN or neither is NaN and they are equal
erf(double) - Static method in class org.apache.commons.math.special.Erf
Returns the error function erf(x).
evaluate(double[], double) - Static method in class org.apache.commons.math.analysis.PolynomialFunction
Uses Horner's Method to evaluate the polynomial with the given coefficients at the argument.
evaluate(double[]) - Method in class org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic
This default implementation calls AbstractStorelessUnivariateStatistic.clear(), then invokes AbstractStorelessUnivariateStatistic.increment(double) in a loop over the the input array, and then uses AbstractStorelessUnivariateStatistic.getResult() to compute the return value.
evaluate(double[], int, int) - Method in class org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic
This default implementation calls AbstractStorelessUnivariateStatistic.clear(), then invokes AbstractStorelessUnivariateStatistic.increment(double) in a loop over the specified portion of the input array, and then uses AbstractStorelessUnivariateStatistic.getResult() to compute the return value.
evaluate(double[]) - Method in class org.apache.commons.math.stat.descriptive.AbstractUnivariateStatistic
 
evaluate(double[], int, int) - Method in class org.apache.commons.math.stat.descriptive.AbstractUnivariateStatistic
 
evaluate(double[]) - Method in interface org.apache.commons.math.stat.descriptive.UnivariateStatistic
Returns the result of evaluating the statistic over the input array.
evaluate(double[], int, int) - Method in interface org.apache.commons.math.stat.descriptive.UnivariateStatistic
Returns the result of evaluating the statistic over the specified entries in the input array.
evaluate(double[], int, int) - Method in class org.apache.commons.math.stat.descriptive.moment.GeometricMean
Returns the geometric mean of the entries in the specified portion of the input array.
evaluate(double[], int, int) - Method in class org.apache.commons.math.stat.descriptive.moment.Kurtosis
Returns the kurtosis of the entries in the specified portion of the input array.
evaluate(double[], int, int) - Method in class org.apache.commons.math.stat.descriptive.moment.Mean
Returns the arithmetic mean of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
evaluate(double[], int, int) - Method in class org.apache.commons.math.stat.descriptive.moment.Skewness
Returns the Skewness of the entries in the specifed portion of the input array.
evaluate(double[]) - Method in class org.apache.commons.math.stat.descriptive.moment.StandardDeviation
Returns the Standard Deviation of the entries in the input array, or Double.NaN if the array is empty.
evaluate(double[], int, int) - Method in class org.apache.commons.math.stat.descriptive.moment.StandardDeviation
Returns the Standard Deviation of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
evaluate(double[], double, int, int) - Method in class org.apache.commons.math.stat.descriptive.moment.StandardDeviation
Returns the Standard Deviation of the entries in the specified portion of the input array, using the precomputed mean value.
evaluate(double[], double) - Method in class org.apache.commons.math.stat.descriptive.moment.StandardDeviation
Returns the Standard Deviation of the entries in the input array, using the precomputed mean value.
evaluate(double[]) - Method in class org.apache.commons.math.stat.descriptive.moment.Variance
Returns the variance of the entries in the input array, or Double.NaN if the array is empty.
evaluate(double[], int, int) - Method in class org.apache.commons.math.stat.descriptive.moment.Variance
Returns the variance of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
evaluate(double[], double, int, int) - Method in class org.apache.commons.math.stat.descriptive.moment.Variance
Returns the variance of the entries in the specified portion of the input array, using the precomputed mean value.
evaluate(double[], double) - Method in class org.apache.commons.math.stat.descriptive.moment.Variance
Returns the variance of the entries in the input array, using the precomputed mean value.
evaluate(double[], int, int) - Method in class org.apache.commons.math.stat.descriptive.rank.Max
Returns the maximum of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
evaluate(double[], int, int) - Method in class org.apache.commons.math.stat.descriptive.rank.Min
Returns the minimum of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
evaluate(double[], double) - Method in class org.apache.commons.math.stat.descriptive.rank.Percentile
Returns an estimate of the pth percentile of the values in the values array.
evaluate(double[], int, int) - Method in class org.apache.commons.math.stat.descriptive.rank.Percentile
Returns an estimate of the quantileth percentile of the designated values in the values array.
evaluate(double[], int, int, double) - Method in class org.apache.commons.math.stat.descriptive.rank.Percentile
Returns an estimate of the pth percentile of the values in the values array, starting with the element in (0-based) position begin in the array and including length values.
evaluate(double[], int, int) - Method in class org.apache.commons.math.stat.descriptive.summary.Product
Returns the product of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
evaluate(double[], int, int) - Method in class org.apache.commons.math.stat.descriptive.summary.Sum
The sum of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
evaluate(double[], int, int) - Method in class org.apache.commons.math.stat.descriptive.summary.SumOfLogs
Returns the sum of the natural logs of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
evaluate(double[], int, int) - Method in class org.apache.commons.math.stat.descriptive.summary.SumOfSquares
Returns the sum of the squares of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
evaluate(double) - Method in class org.apache.commons.math.util.ContinuedFraction
Evaluates the continued fraction at the value x.
evaluate(double, double) - Method in class org.apache.commons.math.util.ContinuedFraction
Evaluates the continued fraction at the value x.
evaluate(double, int) - Method in class org.apache.commons.math.util.ContinuedFraction
Evaluates the continued fraction at the value x.
evaluate(double, double, int) - Method in class org.apache.commons.math.util.ContinuedFraction
Evaluates the continued fraction at the value x.
exp(Complex) - Static method in class org.apache.commons.math.complex.ComplexUtils
Compute the exponential function for the given complex argument.
expand() - Method in class org.apache.commons.math.util.ResizableDoubleArray
Expands the internal storage array using the expansion factor.
expansionFactor - Variable in class org.apache.commons.math.util.ResizableDoubleArray
The expansion factor of the array.
expansionMode - Variable in class org.apache.commons.math.util.ResizableDoubleArray
Determines whether array expansion by expansionFactor is additive or multiplicative.

F

FDistribution - interface org.apache.commons.math.distribution.FDistribution.
F-Distribution.
FDistributionImpl - class org.apache.commons.math.distribution.FDistributionImpl.
Default implementation of FDistribution.
FDistributionImpl(double, double) - Constructor for class org.apache.commons.math.distribution.FDistributionImpl
Create a F distribution using the given degrees of freedom.
FirstMoment - class org.apache.commons.math.stat.descriptive.moment.FirstMoment.
Computes the first moment (arithmetic mean).
FirstMoment() - Constructor for class org.apache.commons.math.stat.descriptive.moment.FirstMoment
Create a FirstMoment instance
FourthMoment - class org.apache.commons.math.stat.descriptive.moment.FourthMoment.
Computes a statistic related to the Fourth Central Moment.
FourthMoment() - Constructor for class org.apache.commons.math.stat.descriptive.moment.FourthMoment
Create a FourthMoment instance
Frequency - class org.apache.commons.math.stat.Frequency.
Maintains a frequency distribution.
Frequency() - Constructor for class org.apache.commons.math.stat.Frequency
Default constructor.
Frequency(Comparator) - Constructor for class org.apache.commons.math.stat.Frequency
Constructor allowing values Comparator to be specified.
FunctionEvaluationException - exception org.apache.commons.math.FunctionEvaluationException.
Exeption thrown when an error occurs evaluating a function.
FunctionEvaluationException(double) - Constructor for class org.apache.commons.math.FunctionEvaluationException
Construct an exception indicating the argument value that caused the function evaluation to fail.
FunctionEvaluationException(double, String) - Constructor for class org.apache.commons.math.FunctionEvaluationException
Construct an exception using the given argument and message text.
FunctionEvaluationException(double, String, Throwable) - Constructor for class org.apache.commons.math.FunctionEvaluationException
Construct an exception with the given argument, message and root cause.
f - Variable in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
The function to solve.
factorial(int) - Static method in class org.apache.commons.math.util.MathUtils
Returns n!.
factorialDouble(int) - Static method in class org.apache.commons.math.util.MathUtils
Returns n!.
factorialLog(int) - Static method in class org.apache.commons.math.util.MathUtils
Returns the natural logarithm of n!.
fill(double[]) - Method in class org.apache.commons.math.random.ValueServer
Fills the input array with values generated using getNext() repeatedly.
fill(int) - Method in class org.apache.commons.math.random.ValueServer
Returns an array of length length with values generated using getNext() repeatedly.
format(Complex, StringBuffer, FieldPosition) - Method in class org.apache.commons.math.complex.ComplexFormat
Formats a Complex object to produce a string.
format(Object, StringBuffer, FieldPosition) - Method in class org.apache.commons.math.complex.ComplexFormat
Formats a object to produce a string.
formatComplex(Complex) - Static method in class org.apache.commons.math.complex.ComplexFormat
This static method calls formatComplex() on a default instance of ComplexFormat.
functionValueAccuracy - Variable in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Maximum error of function.

G

GAUSSIAN_MODE - Static variable in class org.apache.commons.math.random.ValueServer
Gaussian random deviates with mean = mu, std dev = sigma
Gamma - class org.apache.commons.math.special.Gamma.
This is a utility class that provides computation methods related to the Gamma family of functions.
GammaDistribution - interface org.apache.commons.math.distribution.GammaDistribution.
The Gamma Distribution.
GammaDistributionImpl - class org.apache.commons.math.distribution.GammaDistributionImpl.
The default implementation of GammaDistribution
GammaDistributionImpl(double, double) - Constructor for class org.apache.commons.math.distribution.GammaDistributionImpl
Create a new gamma distribution with the given alpha and beta values.
GeometricMean - class org.apache.commons.math.stat.descriptive.moment.GeometricMean.
Returns the geometric mean of the available values.
GeometricMean() - Constructor for class org.apache.commons.math.stat.descriptive.moment.GeometricMean
Create a GeometricMean instance
geoMean - Variable in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
geoMean of values that have been added
geometricMean(double[]) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the geometric mean of the entries in the input array, or Double.NaN if the array is empty.
geometricMean(double[], int, int) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the geometric mean of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
getA(int, double) - Method in class org.apache.commons.math.util.ContinuedFraction
Access the n-th a coefficient of the continued fraction.
getAbsoluteAccuracy() - Method in interface org.apache.commons.math.analysis.UnivariateRealSolver
Get the actual absolute accuracy.
getAbsoluteAccuracy() - Method in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Get the actual absolute accuracy.
getAlpha() - Method in interface org.apache.commons.math.distribution.GammaDistribution
Access the shape parameter, alpha
getAlpha() - Method in class org.apache.commons.math.distribution.GammaDistributionImpl
Access the shape parameter, alpha
getArgument() - Method in class org.apache.commons.math.FunctionEvaluationException
Returns the function argument that caused this exception.
getAvailableLocales() - Static method in class org.apache.commons.math.complex.ComplexFormat
Get the set of locales for which complex formats are available.
getB(int, double) - Method in class org.apache.commons.math.util.ContinuedFraction
Access the n-th b coefficient of the continued fraction.
getBeta() - Method in interface org.apache.commons.math.distribution.GammaDistribution
Access the scale parameter, beta
getBeta() - Method in class org.apache.commons.math.distribution.GammaDistributionImpl
Access the scale parameter, beta
getBinCount() - Method in interface org.apache.commons.math.random.EmpiricalDistribution
Returns the number of bins.
getBinCount() - Method in class org.apache.commons.math.random.EmpiricalDistributionImpl
Returns the number of bins.
getBinStats() - Method in interface org.apache.commons.math.random.EmpiricalDistribution
Returns a list of SummaryStatistics containing statistics describing the values in each of the bins.
getBinStats() - Method in class org.apache.commons.math.random.EmpiricalDistributionImpl
Returns an ArrayList of SummaryStatistics instances containing statistics describing the values in each of the bins.
getCause() - Method in class org.apache.commons.math.MathException
Gets the cause of this throwable.
getCoefficients() - Method in class org.apache.commons.math.analysis.PolynomialFunction
Returns a copy of the coefficients array.
getColumn(int) - Method in interface org.apache.commons.math.linear.BigMatrix
Returns the entries in column number col as an array.
getColumn(int) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the entries in column number col as an array.
getColumn(int) - Method in interface org.apache.commons.math.linear.RealMatrix
Returns the entries in column number col as an array.
getColumn(int) - Method in class org.apache.commons.math.linear.RealMatrixImpl
Returns the entries in column number col as an array.
getColumnAsDoubleArray(int) - Method in interface org.apache.commons.math.linear.BigMatrix
Returns the entries in column number col as an array of double values.
getColumnAsDoubleArray(int) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the entries in column number col as an array of double values.
getColumnDimension() - Method in interface org.apache.commons.math.linear.BigMatrix
Returns the number of columns in the matrix.
getColumnDimension() - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the number of columns in the matrix.
getColumnDimension() - Method in interface org.apache.commons.math.linear.RealMatrix
Returns the number of columns in the matrix.
getColumnDimension() - Method in class org.apache.commons.math.linear.RealMatrixImpl
 
getColumnMatrix(int) - Method in interface org.apache.commons.math.linear.BigMatrix
Returns the entries in column number column as a column matrix.
getColumnMatrix(int) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the entries in column number column as a column matrix.
getColumnMatrix(int) - Method in interface org.apache.commons.math.linear.RealMatrix
Returns the entries in column number column as a column matrix.
getColumnMatrix(int) - Method in class org.apache.commons.math.linear.RealMatrixImpl
Returns the entries in column number column as a column matrix.
getContractionCriteria() - Method in class org.apache.commons.math.util.ResizableDoubleArray
The contraction criteria defines when the internal array will contract to store only the number of elements in the element array.
getCount(Object) - Method in class org.apache.commons.math.stat.Frequency
Returns the number of values = v.
getCount(int) - Method in class org.apache.commons.math.stat.Frequency
Returns the number of values = v.
getCount(long) - Method in class org.apache.commons.math.stat.Frequency
Returns the number of values = v.
getCount(char) - Method in class org.apache.commons.math.stat.Frequency
Returns the number of values = v.
getCumFreq(Object) - Method in class org.apache.commons.math.stat.Frequency
Returns the cumulative frequency of values less than or equal to v.
getCumFreq(int) - Method in class org.apache.commons.math.stat.Frequency
Returns the cumulative frequency of values less than or equal to v.
getCumFreq(long) - Method in class org.apache.commons.math.stat.Frequency
Returns the cumulative frequency of values less than or equal to v.
getCumFreq(char) - Method in class org.apache.commons.math.stat.Frequency
Returns the cumulative frequency of values less than or equal to v.
getCumPct(Object) - Method in class org.apache.commons.math.stat.Frequency
Returns the cumulative percentage of values less than or equal to v (as a proportion between 0 and 1).
getCumPct(int) - Method in class org.apache.commons.math.stat.Frequency
Returns the cumulative percentage of values less than or equal to v (as a proportion between 0 and 1).
getCumPct(long) - Method in class org.apache.commons.math.stat.Frequency
Returns the cumulative percentage of values less than or equal to v (as a proportion between 0 and 1).
getCumPct(char) - Method in class org.apache.commons.math.stat.Frequency
Returns the cumulative percentage of values less than or equal to v (as a proportion between 0 and 1).
getData() - Method in interface org.apache.commons.math.linear.BigMatrix
Returns matrix entries as a two-dimensional array.
getData() - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns matrix entries as a two-dimensional array.
getData() - Method in interface org.apache.commons.math.linear.RealMatrix
Returns matrix entries as a two-dimensional array.
getData() - Method in class org.apache.commons.math.linear.RealMatrixImpl
Returns matrix entries as a two-dimensional array.
getDataAsDoubleArray() - Method in interface org.apache.commons.math.linear.BigMatrix
Returns matrix entries as a two-dimensional array.
getDataAsDoubleArray() - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns matrix entries as a two-dimensional array.
getDataRef() - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns a reference to the underlying data array.
getDataRef() - Method in class org.apache.commons.math.linear.RealMatrixImpl
Returns a reference to the underlying data array.
getDegreesOfFreedom() - Method in interface org.apache.commons.math.distribution.ChiSquaredDistribution
Access the degrees of freedom.
getDegreesOfFreedom() - Method in class org.apache.commons.math.distribution.ChiSquaredDistributionImpl
Access the degrees of freedom.
getDegreesOfFreedom() - Method in interface org.apache.commons.math.distribution.TDistribution
Access the degrees of freedom.
getDegreesOfFreedom() - Method in class org.apache.commons.math.distribution.TDistributionImpl
Access the degrees of freedom.
getDenominatorDegreesOfFreedom() - Method in interface org.apache.commons.math.distribution.FDistribution
Access the denominator degrees of freedom.
getDenominatorDegreesOfFreedom() - Method in class org.apache.commons.math.distribution.FDistributionImpl
Access the denominator degrees of freedom.
getDeterminant() - Method in interface org.apache.commons.math.linear.BigMatrix
Returns the determinant of this matrix.
getDeterminant() - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the determinant of this matrix.
getDeterminant() - Method in interface org.apache.commons.math.linear.RealMatrix
Returns the determinant of this matrix.
getDeterminant() - Method in class org.apache.commons.math.linear.RealMatrixImpl
 
getDistributionFactory() - Method in class org.apache.commons.math.stat.inference.ChiSquareTestImpl
Gets a DistributionFactory to use in creating ChiSquaredDistribution instances.
getDistributionFactory() - Method in class org.apache.commons.math.stat.inference.TTestImpl
Gets a DistributionFactory to use in creating TDistribution instances.
getDomainLowerBound(double) - Method in class org.apache.commons.math.distribution.AbstractContinuousDistribution
Access the domain value lower bound, based on p, used to bracket a CDF root.
getDomainLowerBound(double) - Method in class org.apache.commons.math.distribution.AbstractIntegerDistribution
Access the domain value lower bound, based on p, used to bracket a PDF root.
getDomainLowerBound(double) - Method in class org.apache.commons.math.distribution.BinomialDistributionImpl
Access the domain value lower bound, based on p, used to bracket a PDF root.
getDomainLowerBound(double) - Method in class org.apache.commons.math.distribution.ChiSquaredDistributionImpl
Access the domain value lower bound, based on p, used to bracket a CDF root.
getDomainLowerBound(double) - Method in class org.apache.commons.math.distribution.ExponentialDistributionImpl
Access the domain value lower bound, based on p, used to bracket a CDF root.
getDomainLowerBound(double) - Method in class org.apache.commons.math.distribution.FDistributionImpl
Access the domain value lower bound, based on p, used to bracket a CDF root.
getDomainLowerBound(double) - Method in class org.apache.commons.math.distribution.GammaDistributionImpl
Access the domain value lower bound, based on p, used to bracket a CDF root.
getDomainLowerBound(double) - Method in class org.apache.commons.math.distribution.HypergeometricDistributionImpl
Access the domain value lower bound, based on p, used to bracket a PDF root.
getDomainLowerBound(double) - Method in class org.apache.commons.math.distribution.NormalDistributionImpl
Access the domain value lower bound, based on p, used to bracket a CDF root.
getDomainLowerBound(double) - Method in class org.apache.commons.math.distribution.PoissonDistributionImpl
Access the domain value lower bound, based on p, used to bracket a CDF root.
getDomainLowerBound(double) - Method in class org.apache.commons.math.distribution.TDistributionImpl
Access the domain value lower bound, based on p, used to bracket a CDF root.
getDomainUpperBound(double) - Method in class org.apache.commons.math.distribution.AbstractContinuousDistribution
Access the domain value upper bound, based on p, used to bracket a CDF root.
getDomainUpperBound(double) - Method in class org.apache.commons.math.distribution.AbstractIntegerDistribution
Access the domain value upper bound, based on p, used to bracket a PDF root.
getDomainUpperBound(double) - Method in class org.apache.commons.math.distribution.BinomialDistributionImpl
Access the domain value upper bound, based on p, used to bracket a PDF root.
getDomainUpperBound(double) - Method in class org.apache.commons.math.distribution.ChiSquaredDistributionImpl
Access the domain value upper bound, based on p, used to bracket a CDF root.
getDomainUpperBound(double) - Method in class org.apache.commons.math.distribution.ExponentialDistributionImpl
Access the domain value upper bound, based on p, used to bracket a CDF root.
getDomainUpperBound(double) - Method in class org.apache.commons.math.distribution.FDistributionImpl
Access the domain value upper bound, based on p, used to bracket a CDF root.
getDomainUpperBound(double) - Method in class org.apache.commons.math.distribution.GammaDistributionImpl
Access the domain value upper bound, based on p, used to bracket a CDF root.
getDomainUpperBound(double) - Method in class org.apache.commons.math.distribution.HypergeometricDistributionImpl
Access the domain value upper bound, based on p, used to bracket a PDF root.
getDomainUpperBound(double) - Method in class org.apache.commons.math.distribution.NormalDistributionImpl
Access the domain value upper bound, based on p, used to bracket a CDF root.
getDomainUpperBound(double) - Method in class org.apache.commons.math.distribution.PoissonDistributionImpl
Access the domain value upper bound, based on p, used to bracket a CDF root.
getDomainUpperBound(double) - Method in class org.apache.commons.math.distribution.TDistributionImpl
Access the domain value upper bound, based on p, used to bracket a CDF root.
getElement(int) - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Returns the element at the specified index
getElement(int) - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatisticsImpl
 
getElement(int) - Method in interface org.apache.commons.math.util.DoubleArray
Returns the element at the specified index.
getElement(int) - Method in class org.apache.commons.math.util.ResizableDoubleArray
Returns the element at the specified index
getElements() - Method in interface org.apache.commons.math.util.DoubleArray
Returns a double[] array containing the elements of this DoubleArray.
getElements() - Method in class org.apache.commons.math.util.ResizableDoubleArray
Returns a double array containing the elements of this ResizableArray.
getEmpiricalDistribution() - Method in class org.apache.commons.math.random.ValueServer
Getter for property empiricalDistribution.
getEntry(int, int) - Method in interface org.apache.commons.math.linear.BigMatrix
Returns the entry in the specified row and column.
getEntry(int, int) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the entry in the specified row and column.
getEntry(int, int) - Method in interface org.apache.commons.math.linear.RealMatrix
Returns the entry in the specified row and column.
getEntry(int, int) - Method in class org.apache.commons.math.linear.RealMatrixImpl
Returns the entry in the specified row and column.
getEntryAsDouble(int, int) - Method in interface org.apache.commons.math.linear.BigMatrix
Returns the entry in the specified row and column as a double.
getEntryAsDouble(int, int) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the entry in the specified row and column as a double.
getExpansionFactor() - Method in class org.apache.commons.math.util.ResizableDoubleArray
The expansion factor controls the size of a new aray when an array needs to be expanded.
getExpansionMode() - Method in class org.apache.commons.math.util.ResizableDoubleArray
The expansionMode determines whether the internal storage array grows additively (ADDITIVE_MODE) or multiplicatively (MULTIPLICATIVE_MODE) when it is expanded.
getFunctionValueAccuracy() - Method in interface org.apache.commons.math.analysis.UnivariateRealSolver
Get the actual function value accuracy.
getFunctionValueAccuracy() - Method in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Get the actual function value accuracy.
getGeometricMean() - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Returns the geometric mean of the available values
getGeometricMean() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatistics
Returns the geometric mean of the available values
getGeometricMean() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
Returns the geometric mean of the values that have been added.
getIdentity(int) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns dimension x dimension identity matrix.
getIdentity(int) - Method in class org.apache.commons.math.linear.RealMatrixImpl
Returns dimension x dimension identity matrix.
getImaginary() - Method in class org.apache.commons.math.complex.Complex
Access the imaginary part.
getImaginaryCharacter() - Method in class org.apache.commons.math.complex.ComplexFormat
Access the imaginaryCharacter.
getImaginaryFormat() - Method in class org.apache.commons.math.complex.ComplexFormat
Access the imaginaryFormat.
getInitialDomain(double) - Method in class org.apache.commons.math.distribution.AbstractContinuousDistribution
Access the initial domain value, based on p, used to bracket a CDF root.
getInitialDomain(double) - Method in class org.apache.commons.math.distribution.ChiSquaredDistributionImpl
Access the initial domain value, based on p, used to bracket a CDF root.
getInitialDomain(double) - Method in class org.apache.commons.math.distribution.ExponentialDistributionImpl
Access the initial domain value, based on p, used to bracket a CDF root.
getInitialDomain(double) - Method in class org.apache.commons.math.distribution.FDistributionImpl
Access the initial domain value, based on p, used to bracket a CDF root.
getInitialDomain(double) - Method in class org.apache.commons.math.distribution.GammaDistributionImpl
Access the initial domain value, based on p, used to bracket a CDF root.
getInitialDomain(double) - Method in class org.apache.commons.math.distribution.NormalDistributionImpl
Access the initial domain value, based on p, used to bracket a CDF root.
getInitialDomain(double) - Method in class org.apache.commons.math.distribution.TDistributionImpl
Access the initial domain value, based on p, used to bracket a CDF root.
getInstance() - Static method in class org.apache.commons.math.complex.ComplexFormat
Returns the default complex format for the current locale.
getInstance(Locale) - Static method in class org.apache.commons.math.complex.ComplexFormat
Returns the default complex format for the given locale.
getIntercept() - Method in class org.apache.commons.math.stat.regression.SimpleRegression
Returns the intercept of the estimated regression line.
getInterceptStdErr() - Method in class org.apache.commons.math.stat.regression.SimpleRegression
Returns the standard error of the intercept estimate, usually denoted s(b0).
getInternalLength() - Method in class org.apache.commons.math.util.ResizableDoubleArray
Notice the package scope on this method.
getIterationCount() - Method in interface org.apache.commons.math.analysis.UnivariateRealSolver
Get the number of iterations in the last run of the solver.
getIterationCount() - Method in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Access the last iteration count.
getKnots() - Method in class org.apache.commons.math.analysis.PolynomialSplineFunction
Returns an array copy of the knot points.
getKurtosis() - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Returns the Kurtosis of the available values.
getLUMatrix() - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the LU decomposition as a BigMatrix.
getLUMatrix() - Method in class org.apache.commons.math.linear.RealMatrixImpl
Returns the LU decomposition as a RealMatrix.
getMax() - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Returns the maximum of the available values
getMax() - Method in interface org.apache.commons.math.stat.descriptive.StatisticalSummary
Returns the maximum of the available values
getMax() - Method in class org.apache.commons.math.stat.descriptive.StatisticalSummaryValues
 
getMax() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatistics
Returns the maximum of the available values
getMax() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
Returns the maximum of the values that have been added.
getMaximalIterationCount() - Method in interface org.apache.commons.math.analysis.UnivariateRealSolver
Get the upper limit for the number of iterations.
getMaximalIterationCount() - Method in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Get the upper limit for the number of iterations.
getMean() - Method in interface org.apache.commons.math.distribution.ExponentialDistribution
Access the mean.
getMean() - Method in class org.apache.commons.math.distribution.ExponentialDistributionImpl
Access the mean.
getMean() - Method in interface org.apache.commons.math.distribution.NormalDistribution
Access the mean.
getMean() - Method in class org.apache.commons.math.distribution.NormalDistributionImpl
Access the mean.
getMean() - Method in interface org.apache.commons.math.distribution.PoissonDistribution
Get the mean for the distribution.
getMean() - Method in class org.apache.commons.math.distribution.PoissonDistributionImpl
Get the Poisson mean for the distribution.
getMean() - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Returns the arithmetic mean of the available values
getMean() - Method in interface org.apache.commons.math.stat.descriptive.StatisticalSummary
Returns the arithmetic mean of the available values
getMean() - Method in class org.apache.commons.math.stat.descriptive.StatisticalSummaryValues
 
getMean() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatistics
Returns the arithmetic mean of the available values
getMean() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
Returns the mean of the values that have been added.
getMeanSquareError() - Method in class org.apache.commons.math.stat.regression.SimpleRegression
Returns the sum of squared errors divided by the degrees of freedom, usually abbreviated MSE.
getMin() - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Returns the minimum of the available values
getMin() - Method in interface org.apache.commons.math.stat.descriptive.StatisticalSummary
Returns the minimum of the available values
getMin() - Method in class org.apache.commons.math.stat.descriptive.StatisticalSummaryValues
 
getMin() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatistics
Returns the minimum of the available values
getMin() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
Returns the minimum of the values that have been added.
getMode() - Method in class org.apache.commons.math.random.ValueServer
Getter for property mode.
getMu() - Method in class org.apache.commons.math.random.ValueServer
Getter for property mu.
getN() - Method in class org.apache.commons.math.analysis.PolynomialSplineFunction
Returns the number of spline segments = the number of polynomials = the number of knot points - 1.
getN() - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Returns the number of available values
getN() - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatisticsImpl
 
getN() - Method in interface org.apache.commons.math.stat.descriptive.StatisticalSummary
Returns the number of available values
getN() - Method in class org.apache.commons.math.stat.descriptive.StatisticalSummaryValues
 
getN() - Method in interface org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic
Returns the number of values that have been added.
getN() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatistics
Returns the number of available values
getN() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
Returns the number of available values
getN() - Method in class org.apache.commons.math.stat.descriptive.moment.FirstMoment
 
getN() - Method in class org.apache.commons.math.stat.descriptive.moment.GeometricMean
 
getN() - Method in class org.apache.commons.math.stat.descriptive.moment.Kurtosis
 
getN() - Method in class org.apache.commons.math.stat.descriptive.moment.Mean
 
getN() - Method in class org.apache.commons.math.stat.descriptive.moment.Skewness
 
getN() - Method in class org.apache.commons.math.stat.descriptive.moment.StandardDeviation
 
getN() - Method in class org.apache.commons.math.stat.descriptive.moment.Variance
 
getN() - Method in class org.apache.commons.math.stat.descriptive.rank.Max
 
getN() - Method in class org.apache.commons.math.stat.descriptive.rank.Min
 
getN() - Method in class org.apache.commons.math.stat.descriptive.summary.Product
 
getN() - Method in class org.apache.commons.math.stat.descriptive.summary.Sum
 
getN() - Method in class org.apache.commons.math.stat.descriptive.summary.SumOfLogs
 
getN() - Method in class org.apache.commons.math.stat.descriptive.summary.SumOfSquares
 
getN() - Method in class org.apache.commons.math.stat.regression.SimpleRegression
Returns the number of observations that have been added to the model.
getNext() - Method in class org.apache.commons.math.random.ValueServer
Returns the next generated value, generated according to the mode value (see MODE constants).
getNextValue() - Method in interface org.apache.commons.math.random.EmpiricalDistribution
Generates a random value from this distribution.
getNextValue() - Method in class org.apache.commons.math.random.EmpiricalDistributionImpl
Generates a random value from this distribution.
getNorm() - Method in interface org.apache.commons.math.linear.BigMatrix
Returns the maximum absolute row sum norm of the matrix.
getNorm() - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the maximum absolute row sum norm of the matrix.
getNorm() - Method in interface org.apache.commons.math.linear.RealMatrix
Returns the maximum absolute row sum norm of the matrix.
getNorm() - Method in class org.apache.commons.math.linear.RealMatrixImpl
 
getNumElements() - Method in interface org.apache.commons.math.util.DoubleArray
Returns the number of elements currently in the array.
getNumElements() - Method in class org.apache.commons.math.util.ResizableDoubleArray
Returns the number of elements currently in the array.
getNumberOfSuccesses() - Method in interface org.apache.commons.math.distribution.HypergeometricDistribution
Access the number of successes.
getNumberOfSuccesses() - Method in class org.apache.commons.math.distribution.HypergeometricDistributionImpl
Access the number of successes.
getNumberOfTrials() - Method in interface org.apache.commons.math.distribution.BinomialDistribution
Access the number of trials for this distribution.
getNumberOfTrials() - Method in class org.apache.commons.math.distribution.BinomialDistributionImpl
Access the number of trials for this distribution.
getNumeratorDegreesOfFreedom() - Method in interface org.apache.commons.math.distribution.FDistribution
Access the numerator degrees of freedom.
getNumeratorDegreesOfFreedom() - Method in class org.apache.commons.math.distribution.FDistributionImpl
Access the numerator degrees of freedom.
getPct(Object) - Method in class org.apache.commons.math.stat.Frequency
Returns the percentage of values that are equal to v (as a proportion between 0 and 1).
getPct(int) - Method in class org.apache.commons.math.stat.Frequency
Returns the percentage of values that are equal to v (as a proportion between 0 and 1).
getPct(long) - Method in class org.apache.commons.math.stat.Frequency
Returns the percentage of values that are equal to v (as a proportion between 0 and 1).
getPct(char) - Method in class org.apache.commons.math.stat.Frequency
Returns the percentage of values that are equal to v (as a proportion between 0 and 1).
getPercentile(double) - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Returns an estimate for the pth percentile of the stored values.
getPermutation() - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the permutation associated with the lu decomposition.
getPermutation() - Method in class org.apache.commons.math.linear.RealMatrixImpl
Returns the permutation associated with the lu decomposition.
getPolynomials() - Method in class org.apache.commons.math.analysis.PolynomialSplineFunction
Returns a copy of the interpolating polynomials array.
getPopulationSize() - Method in interface org.apache.commons.math.distribution.HypergeometricDistribution
Access the population size.
getPopulationSize() - Method in class org.apache.commons.math.distribution.HypergeometricDistributionImpl
Access the population size.
getProbabilityOfSuccess() - Method in interface org.apache.commons.math.distribution.BinomialDistribution
Access the probability of success for this distribution.
getProbabilityOfSuccess() - Method in class org.apache.commons.math.distribution.BinomialDistributionImpl
Access the probability of success for this distribution.
getQuantile() - Method in class org.apache.commons.math.stat.descriptive.rank.Percentile
Returns the value of the quantile field (determines what percentile is computed when evaluate() is called with no quantile argument).
getR() - Method in class org.apache.commons.math.stat.regression.SimpleRegression
Returns Pearson's product moment correlation coefficient, usually denoted r.
getRSquare() - Method in class org.apache.commons.math.stat.regression.SimpleRegression
Returns the coefficient of determination, usually denoted r-square.
getReal() - Method in class org.apache.commons.math.complex.Complex
Access the real part.
getRealFormat() - Method in class org.apache.commons.math.complex.ComplexFormat
Access the realFormat.
getRegressionSumSquares() - Method in class org.apache.commons.math.stat.regression.SimpleRegression
Returns the sum of squared deviations of the predicted y values about their mean (which equals the mean of y).
getRelativeAccuracy() - Method in interface org.apache.commons.math.analysis.UnivariateRealSolver
Get the actual relative accuracy.
getRelativeAccuracy() - Method in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Get the actual relative accuracy.
getResult() - Method in interface org.apache.commons.math.analysis.UnivariateRealSolver
Get the result of the last run of the solver.
getResult() - Method in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Access the last computed root.
getResult() - Method in class org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic
 
getResult() - Method in interface org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic
Returns the current value of the Statistic.
getResult() - Method in class org.apache.commons.math.stat.descriptive.moment.FirstMoment
 
getResult() - Method in class org.apache.commons.math.stat.descriptive.moment.FourthMoment
 
getResult() - Method in class org.apache.commons.math.stat.descriptive.moment.GeometricMean
 
getResult() - Method in class org.apache.commons.math.stat.descriptive.moment.Kurtosis
 
getResult() - Method in class org.apache.commons.math.stat.descriptive.moment.Mean
 
getResult() - Method in class org.apache.commons.math.stat.descriptive.moment.SecondMoment
 
getResult() - Method in class org.apache.commons.math.stat.descriptive.moment.Skewness
Returns the value of the statistic based on the values that have been added.
getResult() - Method in class org.apache.commons.math.stat.descriptive.moment.StandardDeviation
 
getResult() - Method in class org.apache.commons.math.stat.descriptive.moment.ThirdMoment
 
getResult() - Method in class org.apache.commons.math.stat.descriptive.moment.Variance
 
getResult() - Method in class org.apache.commons.math.stat.descriptive.rank.Max
 
getResult() - Method in class org.apache.commons.math.stat.descriptive.rank.Min
 
getResult() - Method in class org.apache.commons.math.stat.descriptive.summary.Product
 
getResult() - Method in class org.apache.commons.math.stat.descriptive.summary.Sum
 
getResult() - Method in class org.apache.commons.math.stat.descriptive.summary.SumOfLogs
 
getResult() - Method in class org.apache.commons.math.stat.descriptive.summary.SumOfSquares
 
getRoundingMode() - Method in interface org.apache.commons.math.linear.BigMatrix
Gets the rounding mode
getRoundingMode() - Method in class org.apache.commons.math.linear.BigMatrixImpl
Gets the rounding mode for division operations The default is BigDecimal.ROUND_HALF_UP
getRow(int) - Method in interface org.apache.commons.math.linear.BigMatrix
Returns the entries in row number row as an array.
getRow(int) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the entries in row number row as an array.
getRow(int) - Method in interface org.apache.commons.math.linear.RealMatrix
Returns the entries in row number row as an array.
getRow(int) - Method in class org.apache.commons.math.linear.RealMatrixImpl
Returns the entries in row number row as an array.
getRowAsDoubleArray(int) - Method in interface org.apache.commons.math.linear.BigMatrix
Returns the entries in row number row as an array of double values.
getRowAsDoubleArray(int) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the entries in row number row as an array of double values.
getRowDimension() - Method in interface org.apache.commons.math.linear.BigMatrix
Returns the number of rows in the matrix.
getRowDimension() - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the number of rows in the matrix.
getRowDimension() - Method in interface org.apache.commons.math.linear.RealMatrix
Returns the number of rows in the matrix.
getRowDimension() - Method in class org.apache.commons.math.linear.RealMatrixImpl
 
getRowMatrix(int) - Method in interface org.apache.commons.math.linear.BigMatrix
Returns the entries in row number row as a row matrix.
getRowMatrix(int) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the entries in row number row as a row matrix.
getRowMatrix(int) - Method in interface org.apache.commons.math.linear.RealMatrix
Returns the entries in row number row as a row matrix.
getRowMatrix(int) - Method in class org.apache.commons.math.linear.RealMatrixImpl
Returns the entries in row number row as a row matrix.
getSampleSize() - Method in interface org.apache.commons.math.distribution.HypergeometricDistribution
Access the sample size.
getSampleSize() - Method in class org.apache.commons.math.distribution.HypergeometricDistributionImpl
Access the sample size.
getSampleStats() - Method in interface org.apache.commons.math.random.EmpiricalDistribution
Returns a StatisticalSummary describing this distribution.
getSampleStats() - Method in class org.apache.commons.math.random.EmpiricalDistributionImpl
Returns a StatisticalSummary describing this distribution.
getScale() - Method in class org.apache.commons.math.linear.BigMatrixImpl
Sets the scale for division operations.
getSigma() - Method in class org.apache.commons.math.random.ValueServer
Getter for property sigma.
getSignificance() - Method in class org.apache.commons.math.stat.regression.SimpleRegression
Returns the significance level of the slope (equiv) correlation.
getSkewness() - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Returns the skewness of the available values.
getSlope() - Method in class org.apache.commons.math.stat.regression.SimpleRegression
Returns the slope of the estimated regression line.
getSlopeConfidenceInterval() - Method in class org.apache.commons.math.stat.regression.SimpleRegression
Returns the half-width of a 95% confidence interval for the slope estimate.
getSlopeConfidenceInterval(double) - Method in class org.apache.commons.math.stat.regression.SimpleRegression
Returns the half-width of a (100-100*alpha)% confidence interval for the slope estimate.
getSlopeStdErr() - Method in class org.apache.commons.math.stat.regression.SimpleRegression
Returns the standard error of the slope estimate, usually denoted s(b1).
getSortedValues() - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Returns the current set of values in an array of double primitives, sorted in ascending order.
getStandardDeviation() - Method in interface org.apache.commons.math.distribution.NormalDistribution
Access the standard deviation.
getStandardDeviation() - Method in class org.apache.commons.math.distribution.NormalDistributionImpl
Access the standard deviation.
getStandardDeviation() - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Returns the standard deviation of the available values.
getStandardDeviation() - Method in interface org.apache.commons.math.stat.descriptive.StatisticalSummary
Returns the standard deviation of the available values.
getStandardDeviation() - Method in class org.apache.commons.math.stat.descriptive.StatisticalSummaryValues
 
getStandardDeviation() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatistics
Returns the standard deviation of the available values.
getStandardDeviation() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
Returns the standard deviation of the values that have been added.
getSubMatrix(int, int, int, int) - Method in interface org.apache.commons.math.linear.BigMatrix
Gets a submatrix.
getSubMatrix(int[], int[]) - Method in interface org.apache.commons.math.linear.BigMatrix
Gets a submatrix.
getSubMatrix(int, int, int, int) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Gets a submatrix.
getSubMatrix(int[], int[]) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Gets a submatrix.
getSubMatrix(int, int, int, int) - Method in interface org.apache.commons.math.linear.RealMatrix
Gets a submatrix.
getSubMatrix(int[], int[]) - Method in interface org.apache.commons.math.linear.RealMatrix
Gets a submatrix.
getSubMatrix(int, int, int, int) - Method in class org.apache.commons.math.linear.RealMatrixImpl
Gets a submatrix.
getSubMatrix(int[], int[]) - Method in class org.apache.commons.math.linear.RealMatrixImpl
Gets a submatrix.
getSum() - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Returns the sum of the values that have been added to Univariate.
getSum() - Method in interface org.apache.commons.math.stat.descriptive.StatisticalSummary
Returns the sum of the values that have been added to Univariate.
getSum() - Method in class org.apache.commons.math.stat.descriptive.StatisticalSummaryValues
 
getSum() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatistics
Returns the sum of the values that have been added to Univariate.
getSum() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
Returns the sum of the values that have been added to Univariate.
getSumFreq() - Method in class org.apache.commons.math.stat.Frequency
Returns the sum of all frequencies.
getSumSquaredErrors() - Method in class org.apache.commons.math.stat.regression.SimpleRegression
Returns the sum of squared errors (SSE) associated with the regression model.
getSummary() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatistics
Return a StatisticalSummaryValues instance reporting current statistics.
getSumsq() - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Returns the sum of the squares of the available values.
getSumsq() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatistics
Returns the sum of the squares of the available values.
getSumsq() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
Returns the sum of the squares of the values that have been added.
getTotalSumSquares() - Method in class org.apache.commons.math.stat.regression.SimpleRegression
Returns the sum of squared deviations of the y values about their mean.
getTrace() - Method in interface org.apache.commons.math.linear.BigMatrix
Returns the trace of the matrix (the sum of the elements on the main diagonal).
getTrace() - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the trace of the matrix (the sum of the elements on the main diagonal).
getTrace() - Method in interface org.apache.commons.math.linear.RealMatrix
Returns the trace of the matrix (the sum of the elements on the main diagonal).
getTrace() - Method in class org.apache.commons.math.linear.RealMatrixImpl
 
getTransformer(Class) - Method in class org.apache.commons.math.util.TransformerMap
Returns the Transformer that is mapped to a class if mapping is not present, this returns null.
getUpperBounds() - Method in interface org.apache.commons.math.random.EmpiricalDistribution
Returns the array of upper bounds for the bins.
getUpperBounds() - Method in class org.apache.commons.math.random.EmpiricalDistributionImpl
Returns the array of upper bounds for the bins.
getValues() - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Returns the current set of values in an array of double primitives.
getValues() - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatisticsImpl
 
getValues() - Method in class org.apache.commons.math.util.ResizableDoubleArray
Returns the internal storage array.
getValuesFileURL() - Method in class org.apache.commons.math.random.ValueServer
Getter for valuesFileURL
getVariance() - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Returns the variance of the available values.
getVariance() - Method in interface org.apache.commons.math.stat.descriptive.StatisticalSummary
Returns the variance of the available values.
getVariance() - Method in class org.apache.commons.math.stat.descriptive.StatisticalSummaryValues
 
getVariance() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatistics
Returns the variance of the available values.
getVariance() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
Returns the variance of the values that have been added.
getWindowSize() - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Univariate has the ability to return only measures for the last N elements added to the set of values.
getWindowSize() - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatisticsImpl
Access the window size.

H

HypergeometricDistribution - interface org.apache.commons.math.distribution.HypergeometricDistribution.
The Hypergeometric Distribution.
HypergeometricDistributionImpl - class org.apache.commons.math.distribution.HypergeometricDistributionImpl.
The default implementation of HypergeometricDistribution.
HypergeometricDistributionImpl(int, int, int) - Constructor for class org.apache.commons.math.distribution.HypergeometricDistributionImpl
Construct a new hypergeometric distribution with the given the population size, the number of successes in the population, and the sample size.
hash(double) - Static method in class org.apache.commons.math.util.MathUtils
Returns an integer hash code representing the given double value.
hashCode() - Method in class org.apache.commons.math.linear.BigMatrixImpl
Computes a hashcode for the matrix.
hashCode() - Method in class org.apache.commons.math.linear.RealMatrixImpl
Computes a hashcode for the matrix.
hashCode() - Method in class org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic
Returns hash code based on getResult() and getN()
hashCode() - Method in class org.apache.commons.math.stat.descriptive.StatisticalSummaryValues
Returns hash code based on values of statistics
hashCode() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatistics
Returns hash code based on values of statistics
homoscedasticT(double[], double[]) - Method in interface org.apache.commons.math.stat.inference.TTest
Computes a 2-sample t statistic, under the hypothesis of equal subpopulation variances.
homoscedasticT(StatisticalSummary, StatisticalSummary) - Method in interface org.apache.commons.math.stat.inference.TTest
Computes a 2-sample t statistic, comparing the means of the datasets described by two StatisticalSummary instances, under the assumption of equal subpopulation variances.
homoscedasticT(double[], double[]) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Computes a 2-sample t statistic, under the hypothesis of equal subpopulation variances.
homoscedasticT(StatisticalSummary, StatisticalSummary) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Computes a 2-sample t statistic, comparing the means of the datasets described by two StatisticalSummary instances, under the assumption of equal subpopulation variances.
homoscedasticT(double, double, double, double, double, double) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Computes t test statistic for 2-sample t-test under the hypothesis of equal subpopulation variances.
homoscedasticTTest(double[], double[]) - Method in interface org.apache.commons.math.stat.inference.TTest
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays, under the assumption that the two samples are drawn from subpopulations with equal variances.
homoscedasticTTest(double[], double[], double) - Method in interface org.apache.commons.math.stat.inference.TTest
Performs a two-sided t-test evaluating the null hypothesis that sample1 and sample2 are drawn from populations with the same mean, with significance level alpha, assuming that the subpopulation variances are equal.
homoscedasticTTest(StatisticalSummary, StatisticalSummary) - Method in interface org.apache.commons.math.stat.inference.TTest
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances, under the hypothesis of equal subpopulation variances.
homoscedasticTTest(double[], double[]) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays, under the assumption that the two samples are drawn from subpopulations with equal variances.
homoscedasticTTest(double[], double[], double) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Performs a two-sided t-test evaluating the null hypothesis that sample1 and sample2 are drawn from populations with the same mean, with significance level alpha, assuming that the subpopulation variances are equal.
homoscedasticTTest(StatisticalSummary, StatisticalSummary) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances, under the hypothesis of equal subpopulation variances.
homoscedasticTTest(double, double, double, double, double, double) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Computes p-value for 2-sided, 2-sample t-test, under the assumption of equal subpopulation variances.

I

I - Static variable in class org.apache.commons.math.complex.Complex
The square root of -1.
INFINITE_WINDOW - Static variable in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
This constant signals that a Univariate implementation takes into account the contributions of an infinite number of elements.
IntegerDistribution - interface org.apache.commons.math.distribution.IntegerDistribution.
Interface for discrete distributions of integer-valued random variables.
InvalidMatrixException - exception org.apache.commons.math.linear.InvalidMatrixException.
Thrown when a system attempts an operation on a matrix, and that matrix does not satisfy the preconditions for the aforementioned operation.
InvalidMatrixException() - Constructor for class org.apache.commons.math.linear.InvalidMatrixException
Default constructor.
InvalidMatrixException(String) - Constructor for class org.apache.commons.math.linear.InvalidMatrixException
Construct an exception with the given message.
imaginary - Variable in class org.apache.commons.math.complex.Complex
The imaginary part.
incMoment - Variable in class org.apache.commons.math.stat.descriptive.moment.Kurtosis
Determines whether or not this statistic can be incremented or cleared.
incMoment - Variable in class org.apache.commons.math.stat.descriptive.moment.Mean
Determines whether or not this statistic can be incremented or cleared.
incMoment - Variable in class org.apache.commons.math.stat.descriptive.moment.Skewness
Determines whether or not this statistic can be incremented or cleared.
incMoment - Variable in class org.apache.commons.math.stat.descriptive.moment.Variance
Boolean test to determine if this Variance should also increment the second moment, this evaluates to false when this Variance is constructed with an external SecondMoment as a parameter.
increment(double) - Method in class org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic
 
increment(double) - Method in interface org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic
Updates the internal state of the statistic to reflect the addition of the new value.
increment(double) - Method in class org.apache.commons.math.stat.descriptive.moment.FirstMoment
 
increment(double) - Method in class org.apache.commons.math.stat.descriptive.moment.FourthMoment
 
increment(double) - Method in class org.apache.commons.math.stat.descriptive.moment.GeometricMean
 
increment(double) - Method in class org.apache.commons.math.stat.descriptive.moment.Kurtosis
 
increment(double) - Method in class org.apache.commons.math.stat.descriptive.moment.Mean
 
increment(double) - Method in class org.apache.commons.math.stat.descriptive.moment.SecondMoment
 
increment(double) - Method in class org.apache.commons.math.stat.descriptive.moment.Skewness
 
increment(double) - Method in class org.apache.commons.math.stat.descriptive.moment.StandardDeviation
 
increment(double) - Method in class org.apache.commons.math.stat.descriptive.moment.ThirdMoment
 
increment(double) - Method in class org.apache.commons.math.stat.descriptive.moment.Variance
 
increment(double) - Method in class org.apache.commons.math.stat.descriptive.rank.Max
 
increment(double) - Method in class org.apache.commons.math.stat.descriptive.rank.Min
 
increment(double) - Method in class org.apache.commons.math.stat.descriptive.summary.Product
 
increment(double) - Method in class org.apache.commons.math.stat.descriptive.summary.Sum
 
increment(double) - Method in class org.apache.commons.math.stat.descriptive.summary.SumOfLogs
 
increment(double) - Method in class org.apache.commons.math.stat.descriptive.summary.SumOfSquares
 
incrementAll(double[]) - Method in class org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic
This default implementation just calls AbstractStorelessUnivariateStatistic.increment(double) in a loop over the input array.
incrementAll(double[], int, int) - Method in class org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic
This default implementation just calls AbstractStorelessUnivariateStatistic.increment(double) in a loop over the specified portion of the input array.
incrementAll(double[]) - Method in interface org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic
Updates the internal state of the statistic to reflect addition of all values in the values array.
incrementAll(double[], int, int) - Method in interface org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic
Updates the internal state of the statistic to reflect addition of the values in the designated portion of the values array.
indicator(double) - Static method in class org.apache.commons.math.util.MathUtils
For a double precision value x, this method returns +1.0 if x >= 0 and -1.0 if x < 0.
indicator(float) - Static method in class org.apache.commons.math.util.MathUtils
For a float value x, this method returns +1.0F if x >= 0 and -1.0F if x < 0.
indicator(byte) - Static method in class org.apache.commons.math.util.MathUtils
For a byte value x, this method returns (byte)(+1) if x >= 0 and (byte)(-1) if x < 0.
indicator(short) - Static method in class org.apache.commons.math.util.MathUtils
For a short value x, this method returns (short)(+1) if x >= 0 and (short)(-1) if x < 0.
indicator(int) - Static method in class org.apache.commons.math.util.MathUtils
For an int value x, this method returns +1 if x >= 0 and -1 if x < 0.
indicator(long) - Static method in class org.apache.commons.math.util.MathUtils
For a long value x, this method returns +1L if x >= 0 and -1L if x < 0.
initialCapacity - Variable in class org.apache.commons.math.util.ResizableDoubleArray
The initial capacity of the array.
internalArray - Variable in class org.apache.commons.math.util.ResizableDoubleArray
The internal storage array.
interpolate(double[], double[]) - Method in class org.apache.commons.math.analysis.SplineInterpolator
Computes an interpolating function for the data set.
interpolate(double[], double[]) - Method in interface org.apache.commons.math.analysis.UnivariateRealInterpolator
Computes an interpolating function for the data set.
inverse() - Method in interface org.apache.commons.math.linear.BigMatrix
Returns the inverse of this matrix.
inverse() - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the inverse matrix if this matrix is invertible.
inverse() - Method in interface org.apache.commons.math.linear.RealMatrix
Returns the inverse of this matrix.
inverse() - Method in class org.apache.commons.math.linear.RealMatrixImpl
Returns the inverse matrix if this matrix is invertible.
inverseCumulativeProbability(double) - Method in class org.apache.commons.math.distribution.AbstractContinuousDistribution
For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
inverseCumulativeProbability(double) - Method in class org.apache.commons.math.distribution.AbstractIntegerDistribution
For a random variable X whose values are distributed according to this distribution, this method returns the largest x, such that P(X ≤ x) ≤ p.
inverseCumulativeProbability(double) - Method in class org.apache.commons.math.distribution.BinomialDistributionImpl
For this distribution, X, this method returns the largest x, such that P(X ≤ x) ≤ p.
inverseCumulativeProbability(double) - Method in class org.apache.commons.math.distribution.ChiSquaredDistributionImpl
For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
inverseCumulativeProbability(double) - Method in interface org.apache.commons.math.distribution.ContinuousDistribution
For this disbution, X, this method returns x such that P(X < x) = p.
inverseCumulativeProbability(double) - Method in class org.apache.commons.math.distribution.ExponentialDistributionImpl
For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
inverseCumulativeProbability(double) - Method in class org.apache.commons.math.distribution.FDistributionImpl
For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
inverseCumulativeProbability(double) - Method in class org.apache.commons.math.distribution.GammaDistributionImpl
For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
inverseCumulativeProbability(double) - Method in interface org.apache.commons.math.distribution.IntegerDistribution
For this distribution, X, this method returns the largest x such that P(X ≤ x) <= p.
inverseCumulativeProbability(double) - Method in class org.apache.commons.math.distribution.NormalDistributionImpl
For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
inverseCumulativeProbability(double) - Method in class org.apache.commons.math.distribution.TDistributionImpl
For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
isBiasCorrected() - Method in class org.apache.commons.math.stat.descriptive.moment.StandardDeviation
 
isBiasCorrected() - Method in class org.apache.commons.math.stat.descriptive.moment.Variance
 
isBracketing(double, double, UnivariateRealFunction) - Method in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Returns true iff the function takes opposite signs at the endpoints.
isLoaded() - Method in interface org.apache.commons.math.random.EmpiricalDistribution
Property indicating whether or not the distribution has been loaded.
isLoaded() - Method in class org.apache.commons.math.random.EmpiricalDistributionImpl
Property indicating whether or not the distribution has been loaded.
isNaN() - Method in class org.apache.commons.math.complex.Complex
Returns true if this complex number is the special Not-a-Number (NaN) value.
isSequence(double, double, double) - Method in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Returns true if the arguments form a (strictly) increasing sequence
isSingular() - Method in interface org.apache.commons.math.linear.BigMatrix
Is this a singular matrix?
isSingular() - Method in class org.apache.commons.math.linear.BigMatrixImpl
Is this a singular matrix?
isSingular() - Method in interface org.apache.commons.math.linear.RealMatrix
Is this a singular matrix?
isSingular() - Method in class org.apache.commons.math.linear.RealMatrixImpl
 
isSquare() - Method in interface org.apache.commons.math.linear.BigMatrix
Is this a square matrix?
isSquare() - Method in class org.apache.commons.math.linear.BigMatrixImpl
Is this a square matrix?
isSquare() - Method in interface org.apache.commons.math.linear.RealMatrix
Is this a square matrix?
isSquare() - Method in class org.apache.commons.math.linear.RealMatrixImpl
 
iterationCount - Variable in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
The last iteration count.

K

Kurtosis - class org.apache.commons.math.stat.descriptive.moment.Kurtosis.
Computes the Kurtosis of the available values.
Kurtosis() - Constructor for class org.apache.commons.math.stat.descriptive.moment.Kurtosis
Construct a Kurtosis
Kurtosis(FourthMoment) - Constructor for class org.apache.commons.math.stat.descriptive.moment.Kurtosis
Construct a Kurtosis from an external moment

L

load(double[]) - Method in interface org.apache.commons.math.random.EmpiricalDistribution
Computes the empirical distribution from the provided array of numbers.
load(File) - Method in interface org.apache.commons.math.random.EmpiricalDistribution
Computes the empirical distribution from the input file.
load(URL) - Method in interface org.apache.commons.math.random.EmpiricalDistribution
Computes the empirical distribution using data read from a URL.
load(double[]) - Method in class org.apache.commons.math.random.EmpiricalDistributionImpl
Computes the empirical distribution from the provided array of numbers.
load(URL) - Method in class org.apache.commons.math.random.EmpiricalDistributionImpl
Computes the empirical distribution using data read from a URL.
load(File) - Method in class org.apache.commons.math.random.EmpiricalDistributionImpl
Computes the empirical distribution from the input file.
log(Complex) - Static method in class org.apache.commons.math.complex.ComplexUtils
Compute the natural logarithm for the given complex argument.
logBeta(double, double) - Static method in class org.apache.commons.math.special.Beta
Returns the natural logarithm of the beta function B(a, b).
logBeta(double, double, double, int) - Static method in class org.apache.commons.math.special.Beta
Returns the natural logarithm of the beta function B(a, b).
logGamma(double) - Static method in class org.apache.commons.math.special.Gamma
Returns the natural logarithm of the gamma function Γ(x).
luDecompose() - Method in class org.apache.commons.math.linear.BigMatrixImpl
Computes a new LU decompostion for this matrix, storing the result for use by other methods.
luDecompose() - Method in class org.apache.commons.math.linear.RealMatrixImpl
Computes a new LU decompostion for this matrix, storing the result for use by other methods.

M

MULTIPLICATIVE_MODE - Static variable in class org.apache.commons.math.util.ResizableDoubleArray
multiplicative expansion mode
MathConfigurationException - exception org.apache.commons.math.MathConfigurationException.
Signals a configuration problem with any of the factory methods.
MathConfigurationException() - Constructor for class org.apache.commons.math.MathConfigurationException
Default constructor.
MathConfigurationException(String) - Constructor for class org.apache.commons.math.MathConfigurationException
Construct an exception with the given message.
MathConfigurationException(String, Throwable) - Constructor for class org.apache.commons.math.MathConfigurationException
Construct an exception with the given message and root cause.
MathConfigurationException(Throwable) - Constructor for class org.apache.commons.math.MathConfigurationException
Construct an exception with the given root cause.
MathException - exception org.apache.commons.math.MathException.
Base class for commons-math checked exceptions.
MathException() - Constructor for class org.apache.commons.math.MathException
Constructs a new MathException with no detail message.
MathException(String) - Constructor for class org.apache.commons.math.MathException
Constructs a new MathException with specified detail message.
MathException(Throwable) - Constructor for class org.apache.commons.math.MathException
Constructs a new MathException with specified nested Throwable root cause.
MathException(String, Throwable) - Constructor for class org.apache.commons.math.MathException
Constructs a new MathException with specified detail message and nested Throwable root cause.
MathUtils - class org.apache.commons.math.util.MathUtils.
Some useful additions to the built-in functions in Math.
MatrixIndexException - exception org.apache.commons.math.linear.MatrixIndexException.
Thrown when an operation addresses a matrix coordinate (row,col) which is outside of the dimensions of a matrix.
MatrixIndexException() - Constructor for class org.apache.commons.math.linear.MatrixIndexException
Default constructor.
MatrixIndexException(String) - Constructor for class org.apache.commons.math.linear.MatrixIndexException
Construct an exception with the given message and root cause.
MatrixUtils - class org.apache.commons.math.linear.MatrixUtils.
A collection of static methods that operate on or return matrices.
MatrixUtils() - Constructor for class org.apache.commons.math.linear.MatrixUtils
Default constructor.
Max - class org.apache.commons.math.stat.descriptive.rank.Max.
Returns the maximum of the available values.
Max() - Constructor for class org.apache.commons.math.stat.descriptive.rank.Max
Create a Max instance
Mean - class org.apache.commons.math.stat.descriptive.moment.Mean.
Returns the arithmetic mean of the available values.
Mean() - Constructor for class org.apache.commons.math.stat.descriptive.moment.Mean
Constructs a Mean.
Mean(FirstMoment) - Constructor for class org.apache.commons.math.stat.descriptive.moment.Mean
Constructs a Mean with an External Moment.
Median - class org.apache.commons.math.stat.descriptive.rank.Median.
Returns the median of the available values.
Median() - Constructor for class org.apache.commons.math.stat.descriptive.rank.Median
Default constructor.
Min - class org.apache.commons.math.stat.descriptive.rank.Min.
Returns the minimum of the available values.
Min() - Constructor for class org.apache.commons.math.stat.descriptive.rank.Min
Create a Min instance
m1 - Variable in class org.apache.commons.math.stat.descriptive.moment.FirstMoment
First moment of values that have been added
m2 - Variable in class org.apache.commons.math.stat.descriptive.moment.SecondMoment
second moment of values that have been added
m3 - Variable in class org.apache.commons.math.stat.descriptive.moment.ThirdMoment
third moment of values that have been added
m4 - Variable in class org.apache.commons.math.stat.descriptive.moment.FourthMoment
fourth moment of values that have been added
max(double[]) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the maximum of the entries in the input array, or Double.NaN if the array is empty.
max(double[], int, int) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the maximum of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
max - Variable in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
max of values that have been added
maximalIterationCount - Variable in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Maximum number of iterations.
mean(double[]) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the arithmetic mean of the entries in the input array, or Double.NaN if the array is empty.
mean(double[], int, int) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the arithmetic mean of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
mean - Variable in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
mean of values that have been added
meanDifference(double[], double[]) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the mean of the (signed) differences between corresponding elements of the input arrays -- i.e., sum(sample1[i] - sample2[i]) / sample1.length.
midpoint(double, double) - Static method in class org.apache.commons.math.analysis.UnivariateRealSolverUtils
Compute the midpoint of two values.
min(double[]) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the minimum of the entries in the input array, or Double.NaN if the array is empty.
min(double[], int, int) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the minimum of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
min - Variable in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
min of values that have been added
moment - Variable in class org.apache.commons.math.stat.descriptive.moment.Kurtosis
Fourth Moment on which this statistic is based
moment - Variable in class org.apache.commons.math.stat.descriptive.moment.Mean
First moment on which this statistic is based.
moment - Variable in class org.apache.commons.math.stat.descriptive.moment.Skewness
Third moment on which this statistic is based
moment - Variable in class org.apache.commons.math.stat.descriptive.moment.Variance
SecondMoment is used in incremental calculation of Variance
multiply(Complex) - Method in class org.apache.commons.math.complex.Complex
Return the product of this complex number and the given complex number.
multiply(BigMatrix) - Method in interface org.apache.commons.math.linear.BigMatrix
Returns the result of postmultiplying this by m.
multiply(BigMatrix) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the result of postmultiplying this by m.
multiply(RealMatrix) - Method in interface org.apache.commons.math.linear.RealMatrix
Returns the result of postmultiplying this by m.
multiply(RealMatrix) - Method in class org.apache.commons.math.linear.RealMatrixImpl
Returns the result of postmultiplying this by m.

N

NaN - Static variable in class org.apache.commons.math.complex.Complex
A complex number representing "(Double.NaN) + (Double.NaN)i"
NewtonSolver - class org.apache.commons.math.analysis.NewtonSolver.
Implements Newton's Method for finding zeros of real univariate functions.
NewtonSolver(DifferentiableUnivariateRealFunction) - Constructor for class org.apache.commons.math.analysis.NewtonSolver
Construct a solver for the given function.
NormalDistribution - interface org.apache.commons.math.distribution.NormalDistribution.
Normal (Gauss) Distribution.
NormalDistributionImpl - class org.apache.commons.math.distribution.NormalDistributionImpl.
Default implementation of NormalDistribution.
NormalDistributionImpl(double, double) - Constructor for class org.apache.commons.math.distribution.NormalDistributionImpl
Create a normal distribution using the given mean and standard deviation.
NormalDistributionImpl() - Constructor for class org.apache.commons.math.distribution.NormalDistributionImpl
Creates normal distribution with the mean equal to zero and standard deviation equal to one.
NumberTransformer - interface org.apache.commons.math.util.NumberTransformer.
Subclasses implementing this interface can transform Objects to doubles.
n - Variable in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
count of values that have been added
n - Variable in class org.apache.commons.math.stat.descriptive.moment.FirstMoment
Count of values that have been added
nDev - Variable in class org.apache.commons.math.stat.descriptive.moment.FirstMoment
Deviation of most recently added value from previous first moment, normalized by previous sample size.
nDevSq - Variable in class org.apache.commons.math.stat.descriptive.moment.ThirdMoment
Square of deviation of most recently added value from previous first moment, normalized by previous sample size.
negate() - Method in class org.apache.commons.math.complex.Complex
Return the additive inverse of this complex number.
newBisectionSolver(UnivariateRealFunction) - Method in class org.apache.commons.math.analysis.UnivariateRealSolverFactory
Create a new UnivariateRealSolver for the given function.
newBisectionSolver(UnivariateRealFunction) - Method in class org.apache.commons.math.analysis.UnivariateRealSolverFactoryImpl
Create a new UnivariateRealSolver for the given function.
newBrentSolver(UnivariateRealFunction) - Method in class org.apache.commons.math.analysis.UnivariateRealSolverFactory
Create a new UnivariateRealSolver for the given function.
newBrentSolver(UnivariateRealFunction) - Method in class org.apache.commons.math.analysis.UnivariateRealSolverFactoryImpl
Create a new UnivariateRealSolver for the given function.
newDefaultSolver(UnivariateRealFunction) - Method in class org.apache.commons.math.analysis.UnivariateRealSolverFactory
Create a new UnivariateRealSolver for the given function.
newDefaultSolver(UnivariateRealFunction) - Method in class org.apache.commons.math.analysis.UnivariateRealSolverFactoryImpl
Create a new UnivariateRealSolver for the given function.
newInstance() - Static method in class org.apache.commons.math.analysis.UnivariateRealSolverFactory
Create a new factory.
newInstance() - Static method in class org.apache.commons.math.distribution.DistributionFactory
Create an instance of a DistributionFactory
newInstance(Class) - Static method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Create an instance of a DescriptiveStatistics
newInstance() - Static method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Create an instance of a DescriptiveStatistics
newInstance(Class) - Static method in class org.apache.commons.math.stat.descriptive.SummaryStatistics
Create an instance of a SummaryStatistics
newInstance() - Static method in class org.apache.commons.math.stat.descriptive.SummaryStatistics
Create an instance of a SummaryStatistics
newNewtonSolver(DifferentiableUnivariateRealFunction) - Method in class org.apache.commons.math.analysis.UnivariateRealSolverFactory
Create a new UnivariateRealSolver for the given function.
newNewtonSolver(DifferentiableUnivariateRealFunction) - Method in class org.apache.commons.math.analysis.UnivariateRealSolverFactoryImpl
Create a new UnivariateRealSolver for the given function.
newSecantSolver(UnivariateRealFunction) - Method in class org.apache.commons.math.analysis.UnivariateRealSolverFactory
Create a new UnivariateRealSolver for the given function.
newSecantSolver(UnivariateRealFunction) - Method in class org.apache.commons.math.analysis.UnivariateRealSolverFactoryImpl
Create a new UnivariateRealSolver for the given function.
nextExponential(double) - Method in interface org.apache.commons.math.random.RandomData
Generates a random value from the exponential distribution with expected value = mean.
nextExponential(double) - Method in class org.apache.commons.math.random.RandomDataImpl
Returns a random value from an Exponential distribution with the given mean.
nextGaussian(double, double) - Method in interface org.apache.commons.math.random.RandomData
Generates a random value from the Normal (or Gaussian) distribution with the given mean and standard deviation.
nextGaussian(double, double) - Method in class org.apache.commons.math.random.RandomDataImpl
Generate a random value from a Normal (a.k.a.
nextHexString(int) - Method in interface org.apache.commons.math.random.RandomData
Generates a random string of hex characters of length len.
nextHexString(int) - Method in class org.apache.commons.math.random.RandomDataImpl
Algorithm Description: hex strings are generated using a 2-step process.
nextInt(int, int) - Method in interface org.apache.commons.math.random.RandomData
Generates a uniformly distributed random integer between lower and upper (endpoints included).
nextInt(int, int) - Method in class org.apache.commons.math.random.RandomDataImpl
Generate a random int value uniformly distributed between lower and upper, inclusive.
nextLong(long, long) - Method in interface org.apache.commons.math.random.RandomData
Generates a uniformly distributed random long integer between lower and upper (endpoints included).
nextLong(long, long) - Method in class org.apache.commons.math.random.RandomDataImpl
Generate a random long value uniformly distributed between lower and upper, inclusive.
nextPermutation(int, int) - Method in interface org.apache.commons.math.random.RandomData
Generates an integer array of length k whose entries are selected randomly, without repetition, from the integers 0 through n-1 (inclusive).
nextPermutation(int, int) - Method in class org.apache.commons.math.random.RandomDataImpl
Uses a 2-cycle permutation shuffle to generate a random permutation.
nextPoisson(double) - Method in interface org.apache.commons.math.random.RandomData
Generates a random value from the Poisson distribution with the given mean.
nextPoisson(double) - Method in class org.apache.commons.math.random.RandomDataImpl
Generates a random long value from the Poisson distribution with the given mean.
nextSample(Collection, int) - Method in interface org.apache.commons.math.random.RandomData
Returns an array of k objects selected randomly from the Collection c.
nextSample(Collection, int) - Method in class org.apache.commons.math.random.RandomDataImpl
Uses a 2-cycle permutation shuffle to generate a random permutation.
nextSecureHexString(int) - Method in interface org.apache.commons.math.random.RandomData
Generates a random string of hex characters from a secure random sequence.
nextSecureHexString(int) - Method in class org.apache.commons.math.random.RandomDataImpl
Algorithm Description: hex strings are generated in 40-byte segments using a 3-step process.
nextSecureInt(int, int) - Method in interface org.apache.commons.math.random.RandomData
Generates a uniformly distributed random integer between lower and upper (endpoints included) from a secure random sequence.
nextSecureInt(int, int) - Method in class org.apache.commons.math.random.RandomDataImpl
Generate a random int value uniformly distributed between lower and upper, inclusive.
nextSecureLong(long, long) - Method in interface org.apache.commons.math.random.RandomData
Generates a random long integer between lower and upper (endpoints included).
nextSecureLong(long, long) - Method in class org.apache.commons.math.random.RandomDataImpl
Generate a random long value uniformly distributed between lower and upper, inclusive.
nextUniform(double, double) - Method in interface org.apache.commons.math.random.RandomData
Generates a uniformly distributed random value from the open interval (lower,upper) (i.e., endpoints excluded).
nextUniform(double, double) - Method in class org.apache.commons.math.random.RandomDataImpl
Algorithm Description: scales the output of Random.nextDouble(), but rejects 0 values (i.e., will generate another random double if Random.nextDouble() returns 0).
normalApproximateProbability(int) - Method in interface org.apache.commons.math.distribution.PoissonDistribution
Calculates the Poisson distribution function using a normal approximation.
normalApproximateProbability(int) - Method in class org.apache.commons.math.distribution.PoissonDistributionImpl
Calculates the Poisson distribution function using a normal approximation.
numElements - Variable in class org.apache.commons.math.util.ResizableDoubleArray
The number of addressable elements in the array.

O

ONE - Static variable in class org.apache.commons.math.complex.Complex
A complex number representing "1.0 + 0.0i"
operate(BigDecimal[]) - Method in interface org.apache.commons.math.linear.BigMatrix
Returns the result of multiplying this by the vector v.
operate(BigDecimal[]) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the result of multiplying this by the vector v.
operate(double[]) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the result of multiplying this by the vector v.
operate(double[]) - Method in interface org.apache.commons.math.linear.RealMatrix
Returns the result of multiplying this by the vector v.
operate(double[]) - Method in class org.apache.commons.math.linear.RealMatrixImpl
 
org.apache.commons.math - package org.apache.commons.math
Common classes used throughout the commons-math library.
org.apache.commons.math.analysis - package org.apache.commons.math.analysis
Implementations of common numerical analysis procedures, including root finding and function interpolation.
org.apache.commons.math.complex - package org.apache.commons.math.complex
Complex number type and implementations of complex transcendental functions.
org.apache.commons.math.distribution - package org.apache.commons.math.distribution
Implementations of common discrete and continuous distributions.
org.apache.commons.math.linear - package org.apache.commons.math.linear
Linear algebra support.
org.apache.commons.math.random - package org.apache.commons.math.random
Random number and random data generators.
org.apache.commons.math.special - package org.apache.commons.math.special
Implementations of special functions such as Beta and Gamma.
org.apache.commons.math.stat - package org.apache.commons.math.stat
Data storage, manipulation and summary routines.
org.apache.commons.math.stat.descriptive - package org.apache.commons.math.stat.descriptive
Generic univariate summary statistic objects.
org.apache.commons.math.stat.descriptive.moment - package org.apache.commons.math.stat.descriptive.moment
Summary statistics based on moments.
org.apache.commons.math.stat.descriptive.rank - package org.apache.commons.math.stat.descriptive.rank
Summary statistics based on ranks.
org.apache.commons.math.stat.descriptive.summary - package org.apache.commons.math.stat.descriptive.summary
Other summary statistics.
org.apache.commons.math.stat.inference - package org.apache.commons.math.stat.inference
Classes providing hypothesis testing and confidence interval construction.
org.apache.commons.math.stat.regression - package org.apache.commons.math.stat.regression
Statistical routines involving multivariate data.
org.apache.commons.math.util - package org.apache.commons.math.util
Convience routines and common data structure used throughout the commons-math library.

P

Percentile - class org.apache.commons.math.stat.descriptive.rank.Percentile.
Provides percentile computation.
Percentile() - Constructor for class org.apache.commons.math.stat.descriptive.rank.Percentile
Constructs a Percentile with a default quantile value of 50.0.
Percentile(double) - Constructor for class org.apache.commons.math.stat.descriptive.rank.Percentile
Constructs a Percentile with the specific quantile value.
PoissonDistribution - interface org.apache.commons.math.distribution.PoissonDistribution.
Interface representing the Poisson Distribution.
PoissonDistributionImpl - class org.apache.commons.math.distribution.PoissonDistributionImpl.
Implementation for the @link{PoissonDistribution}
PoissonDistributionImpl(double) - Constructor for class org.apache.commons.math.distribution.PoissonDistributionImpl
Create a new Poisson distribution with the given the mean.
PolynomialFunction - class org.apache.commons.math.analysis.PolynomialFunction.
Immutable representation of a real polynomial function with real coefficients.
PolynomialFunction(double[]) - Constructor for class org.apache.commons.math.analysis.PolynomialFunction
Construct a polynomial with the given coefficients.
PolynomialSplineFunction - class org.apache.commons.math.analysis.PolynomialSplineFunction.
Represents a polynomial spline function.
PolynomialSplineFunction(double[], PolynomialFunction[]) - Constructor for class org.apache.commons.math.analysis.PolynomialSplineFunction
Construct a polynomial spline function with the given segment delimiters and interpolating polynomials.
Product - class org.apache.commons.math.stat.descriptive.summary.Product.
Returns the product of the available values.
Product() - Constructor for class org.apache.commons.math.stat.descriptive.summary.Product
Create a Product instance
pairedT(double[], double[]) - Method in interface org.apache.commons.math.stat.inference.TTest
Computes a paired, 2-sample t-statistic based on the data in the input arrays.
pairedT(double[], double[]) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Computes a paired, 2-sample t-statistic based on the data in the input arrays.
pairedTTest(double[], double[]) - Method in interface org.apache.commons.math.stat.inference.TTest
Returns the observed significance level, or p-value, associated with a paired, two-sample, two-tailed t-test based on the data in the input arrays.
pairedTTest(double[], double[], double) - Method in interface org.apache.commons.math.stat.inference.TTest
Performs a paired t-test evaluating the null hypothesis that the mean of the paired differences between sample1 and sample2 is 0 in favor of the two-sided alternative that the mean paired difference is not equal to 0, with significance level alpha.
pairedTTest(double[], double[]) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Returns the observed significance level, or p-value, associated with a paired, two-sample, two-tailed t-test based on the data in the input arrays.
pairedTTest(double[], double[], double) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Performs a paired t-test evaluating the null hypothesis that the mean of the paired differences between sample1 and sample2 is 0 in favor of the two-sided alternative that the mean paired difference is not equal to 0, with significance level alpha.
parse(String) - Method in class org.apache.commons.math.complex.ComplexFormat
Parses a string to produce a Complex object.
parse(String, ParsePosition) - Method in class org.apache.commons.math.complex.ComplexFormat
Parses a string to produce a Complex object.
parseObject(String, ParsePosition) - Method in class org.apache.commons.math.complex.ComplexFormat
Parses a string to produce a object.
percentile(double[], double) - Static method in class org.apache.commons.math.stat.StatUtils
Returns an estimate of the pth percentile of the values in the values array.
percentile(double[], int, int, double) - Static method in class org.apache.commons.math.stat.StatUtils
Returns an estimate of the pth percentile of the values in the values array, starting with the element in (0-based) position begin in the array and including length values.
polynomialDerivative() - Method in class org.apache.commons.math.analysis.PolynomialFunction
Returns the derivative as a PolynomialRealFunction
polynomialSplineDerivative() - Method in class org.apache.commons.math.analysis.PolynomialSplineFunction
Returns the derivative of the polynomial spline function as a PolynomialSplineFunction
pow(Complex, Complex) - Static method in class org.apache.commons.math.complex.ComplexUtils
Returns of value of y raised to the power of x.
preMultiply(BigMatrix) - Method in interface org.apache.commons.math.linear.BigMatrix
Returns the result premultiplying this by m.
preMultiply(BigDecimal[]) - Method in interface org.apache.commons.math.linear.BigMatrix
Returns the (row) vector result of premultiplying this by the vector v.
preMultiply(BigMatrix) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the result premultiplying this by m.
preMultiply(BigDecimal[]) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the (row) vector result of premultiplying this by the vector v.
preMultiply(RealMatrix) - Method in interface org.apache.commons.math.linear.RealMatrix
Returns the result premultiplying this by m.
preMultiply(double[]) - Method in interface org.apache.commons.math.linear.RealMatrix
Returns the (row) vector result of premultiplying this by the vector v.
preMultiply(RealMatrix) - Method in class org.apache.commons.math.linear.RealMatrixImpl
Returns the result premultiplying this by m.
preMultiply(double[]) - Method in class org.apache.commons.math.linear.RealMatrixImpl
 
predict(double) - Method in class org.apache.commons.math.stat.regression.SimpleRegression
Returns the "predicted" y value associated with the supplied x value, based on the data that has been added to the model when this method is activated.
printStackTrace() - Method in class org.apache.commons.math.MathException
Prints the stack trace of this exception to the standard error stream.
printStackTrace(PrintStream) - Method in class org.apache.commons.math.MathException
Prints the stack trace of this exception to the specified stream.
printStackTrace(PrintWriter) - Method in class org.apache.commons.math.MathException
Prints the stack trace of this exception to the specified writer.
probability(double) - Method in class org.apache.commons.math.distribution.AbstractIntegerDistribution
For a random variable X whose values are distributed according to this distribution, this method returns P(X = x).
probability(int) - Method in class org.apache.commons.math.distribution.BinomialDistributionImpl
For this disbution, X, this method returns P(X = x).
probability(double) - Method in interface org.apache.commons.math.distribution.DiscreteDistribution
For a random variable X whose values are distributed according to this distribution, this method returns P(X = x).
probability(int) - Method in class org.apache.commons.math.distribution.HypergeometricDistributionImpl
For this disbution, X, this method returns P(X = x).
probability(int) - Method in interface org.apache.commons.math.distribution.IntegerDistribution
For a random variable X whose values are distributed according to this distribution, this method returns P(X = x).
probability(int) - Method in class org.apache.commons.math.distribution.PoissonDistributionImpl
The probability mass function P(X = x) for a Poisson distribution.
product(double[]) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the product of the entries in the input array, or Double.NaN if the array is empty.
product(double[], int, int) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the product of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
putTransformer(Class, NumberTransformer) - Method in class org.apache.commons.math.util.TransformerMap
Sets a Class to Transformer Mapping in the Map.

R

REPLAY_MODE - Static variable in class org.apache.commons.math.random.ValueServer
Replay data from valuesFilePath
RandomData - interface org.apache.commons.math.random.RandomData.
Random data generation utilities
RandomDataImpl - class org.apache.commons.math.random.RandomDataImpl.
Implements the RandomData interface using Random and Random.SecureRandom instances to generate data.
RandomDataImpl() - Constructor for class org.apache.commons.math.random.RandomDataImpl
Construct a RandomDataImpl.
RealMatrix - interface org.apache.commons.math.linear.RealMatrix.
Interface defining a real-valued matrix with basic algebraic operations.
RealMatrixImpl - class org.apache.commons.math.linear.RealMatrixImpl.
Implementation for RealMatrix using a double[][] array to store entries and LU decompostion to support linear system solution and inverse.
RealMatrixImpl() - Constructor for class org.apache.commons.math.linear.RealMatrixImpl
Creates a matrix with no data
RealMatrixImpl(int, int) - Constructor for class org.apache.commons.math.linear.RealMatrixImpl
Create a new RealMatrix with the supplied row and column dimensions.
RealMatrixImpl(double[][]) - Constructor for class org.apache.commons.math.linear.RealMatrixImpl
Create a new RealMatrix using the input array as the underlying data array.
RealMatrixImpl(double[]) - Constructor for class org.apache.commons.math.linear.RealMatrixImpl
Create a new (column) RealMatrix using v as the data for the unique column of the v.length x 1 matrix created.
ResizableDoubleArray - class org.apache.commons.math.util.ResizableDoubleArray.
A variable length DoubleArray implementation that automatically handles expanding and contracting its internal storage array as elements are added and removed.
ResizableDoubleArray() - Constructor for class org.apache.commons.math.util.ResizableDoubleArray
Create a ResizableArray with default properties.
ResizableDoubleArray(int) - Constructor for class org.apache.commons.math.util.ResizableDoubleArray
Create a ResizableArray with the specified initial capacity.
ResizableDoubleArray(int, float) - Constructor for class org.apache.commons.math.util.ResizableDoubleArray
Create a ResizableArray with the specified initial capacity and expansion factor.
ResizableDoubleArray(int, float, float) - Constructor for class org.apache.commons.math.util.ResizableDoubleArray
Create a ResizableArray with the specified initialCapacity, expansionFactor, and contractionCriteria.
ResizableDoubleArray(int, float, float, int) - Constructor for class org.apache.commons.math.util.ResizableDoubleArray
Create a ResizableArray with the specified properties.
reSeed(long) - Method in class org.apache.commons.math.random.RandomDataImpl
Reseeds the random number generator with the supplied seed.
reSeed() - Method in class org.apache.commons.math.random.RandomDataImpl
Reseeds the random number generator with the current time in milliseconds.
reSeedSecure() - Method in class org.apache.commons.math.random.RandomDataImpl
Reseeds the secure random number generator with the current time in milliseconds.
reSeedSecure(long) - Method in class org.apache.commons.math.random.RandomDataImpl
Reseeds the secure random number generator with the supplied seed.
real - Variable in class org.apache.commons.math.complex.Complex
The real part.
regularizedBeta(double, double, double) - Static method in class org.apache.commons.math.special.Beta
Returns the regularized beta function I(x, a, b).
regularizedBeta(double, double, double, double) - Static method in class org.apache.commons.math.special.Beta
Returns the regularized beta function I(x, a, b).
regularizedBeta(double, double, double, int) - Static method in class org.apache.commons.math.special.Beta
Returns the regularized beta function I(x, a, b).
regularizedBeta(double, double, double, double, int) - Static method in class org.apache.commons.math.special.Beta
Returns the regularized beta function I(x, a, b).
regularizedGammaP(double, double) - Static method in class org.apache.commons.math.special.Gamma
Returns the regularized gamma function P(a, x).
regularizedGammaP(double, double, double, int) - Static method in class org.apache.commons.math.special.Gamma
Returns the regularized gamma function P(a, x).
regularizedGammaQ(double, double) - Static method in class org.apache.commons.math.special.Gamma
Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
regularizedGammaQ(double, double, double, int) - Static method in class org.apache.commons.math.special.Gamma
Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
relativeAccuracy - Variable in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Maximum relative error.
removeTransformer(Class) - Method in class org.apache.commons.math.util.TransformerMap
Removes a Class to Transformer Mapping in the Map.
resetAbsoluteAccuracy() - Method in interface org.apache.commons.math.analysis.UnivariateRealSolver
Reset the absolute accuracy to the default.
resetAbsoluteAccuracy() - Method in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Reset the absolute accuracy to the default.
resetFunctionValueAccuracy() - Method in interface org.apache.commons.math.analysis.UnivariateRealSolver
Reset the actual function accuracy to the default.
resetFunctionValueAccuracy() - Method in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Reset the actual function accuracy to the default.
resetMaximalIterationCount() - Method in interface org.apache.commons.math.analysis.UnivariateRealSolver
Reset the upper limit for the number of iterations to the default.
resetMaximalIterationCount() - Method in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Reset the upper limit for the number of iterations to the default.
resetRelativeAccuracy() - Method in interface org.apache.commons.math.analysis.UnivariateRealSolver
Reset the relative accuracy to the default.
resetRelativeAccuracy() - Method in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Reset the relative accuracy to the default.
resetReplayFile() - Method in class org.apache.commons.math.random.ValueServer
Resets REPLAY_MODE file pointer to the beginning of the valuesFileURL.
result - Variable in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
The last computed root.
resultComputed - Variable in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Indicates where a root has been computed.

S

SecantSolver - class org.apache.commons.math.analysis.SecantSolver.
Implements a modified version of the secant method for approximating a zero of a real univariate function.
SecantSolver(UnivariateRealFunction) - Constructor for class org.apache.commons.math.analysis.SecantSolver
Construct a solver for the given function.
SecondMoment - class org.apache.commons.math.stat.descriptive.moment.SecondMoment.
Computes a statistic related to the Second Central Moment.
SecondMoment() - Constructor for class org.apache.commons.math.stat.descriptive.moment.SecondMoment
Create a SecondMoment instance
SimpleRegression - class org.apache.commons.math.stat.regression.SimpleRegression.
Estimates an ordinary least squares regression model with one independent variable.
SimpleRegression() - Constructor for class org.apache.commons.math.stat.regression.SimpleRegression
Create an empty SimpleRegression instance
Skewness - class org.apache.commons.math.stat.descriptive.moment.Skewness.
Computes the skewness of the available values.
Skewness() - Constructor for class org.apache.commons.math.stat.descriptive.moment.Skewness
Constructs a Skewness
Skewness(ThirdMoment) - Constructor for class org.apache.commons.math.stat.descriptive.moment.Skewness
Constructs a Skewness with an external moment
SplineInterpolator - class org.apache.commons.math.analysis.SplineInterpolator.
Computes a natural (a.k.a.
SplineInterpolator() - Constructor for class org.apache.commons.math.analysis.SplineInterpolator
 
StandardDeviation - class org.apache.commons.math.stat.descriptive.moment.StandardDeviation.
Computes the sample standard deviation.
StandardDeviation() - Constructor for class org.apache.commons.math.stat.descriptive.moment.StandardDeviation
Constructs a StandardDeviation.
StandardDeviation(SecondMoment) - Constructor for class org.apache.commons.math.stat.descriptive.moment.StandardDeviation
Constructs a StandardDeviation from an external second moment.
StandardDeviation(boolean) - Constructor for class org.apache.commons.math.stat.descriptive.moment.StandardDeviation
Contructs a StandardDeviation with the specified value for the isBiasCorrected property.
StandardDeviation(boolean, SecondMoment) - Constructor for class org.apache.commons.math.stat.descriptive.moment.StandardDeviation
Contructs a StandardDeviation with the specified value for the isBiasCorrected property and the supplied external moment.
StatUtils - class org.apache.commons.math.stat.StatUtils.
StatUtils provides static methods for computing statistics based on data stored in double[] arrays.
StatisticalSummary - interface org.apache.commons.math.stat.descriptive.StatisticalSummary.
Reporting interface for basic univariate statistics.
StatisticalSummaryValues - class org.apache.commons.math.stat.descriptive.StatisticalSummaryValues.
Value object representing the results of a univariate statistical summary.
StatisticalSummaryValues(double, double, long, double, double, double) - Constructor for class org.apache.commons.math.stat.descriptive.StatisticalSummaryValues
Constructor
StorelessUnivariateStatistic - interface org.apache.commons.math.stat.descriptive.StorelessUnivariateStatistic.
Extends the definition of UnivariateStatistic with StorelessUnivariateStatistic.increment(double) and StorelessUnivariateStatistic.incrementAll(double[]) methods for adding values and updating internal state.
Sum - class org.apache.commons.math.stat.descriptive.summary.Sum.
Returns the sum of the available values.
Sum() - Constructor for class org.apache.commons.math.stat.descriptive.summary.Sum
Create a Sum instance
SumOfLogs - class org.apache.commons.math.stat.descriptive.summary.SumOfLogs.
Returns the sum of the natural logs for this collection of values.
SumOfLogs() - Constructor for class org.apache.commons.math.stat.descriptive.summary.SumOfLogs
Create a SumOfLogs instance
SumOfSquares - class org.apache.commons.math.stat.descriptive.summary.SumOfSquares.
Returns the sum of the squares of the available values.
SumOfSquares() - Constructor for class org.apache.commons.math.stat.descriptive.summary.SumOfSquares
Create a SumOfSquares instance
SummaryStatistics - class org.apache.commons.math.stat.descriptive.SummaryStatistics.
Abstract factory class for univariate statistical summaries.
SummaryStatistics() - Constructor for class org.apache.commons.math.stat.descriptive.SummaryStatistics
 
SummaryStatisticsImpl - class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl.
Provides a default SummaryStatistics implementation.
SummaryStatisticsImpl() - Constructor for class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
Construct a SummaryStatistics
sampleStats - Variable in class org.apache.commons.math.random.EmpiricalDistributionImpl
Sample statistics
scalarAdd(BigDecimal) - Method in interface org.apache.commons.math.linear.BigMatrix
Returns the result of adding d to each entry of this.
scalarAdd(BigDecimal) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the result of adding d to each entry of this.
scalarAdd(double) - Method in interface org.apache.commons.math.linear.RealMatrix
Returns the result of adding d to each entry of this.
scalarAdd(double) - Method in class org.apache.commons.math.linear.RealMatrixImpl
Returns the result of adding d to each entry of this.
scalarMultiply(BigDecimal) - Method in interface org.apache.commons.math.linear.BigMatrix
Returns the result multiplying each entry of this by d.
scalarMultiply(BigDecimal) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the result multiplying each entry of this by d
scalarMultiply(double) - Method in interface org.apache.commons.math.linear.RealMatrix
Returns the result multiplying each entry of this by d.
scalarMultiply(double) - Method in class org.apache.commons.math.linear.RealMatrixImpl
Returns the result multiplying each entry of this by d
secondMoment - Variable in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
SecondMoment is used to compute the mean and variance
serialVersionUID - Static variable in class org.apache.commons.math.ConvergenceException
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.FunctionEvaluationException
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.MathConfigurationException
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.MathException
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.analysis.BisectionSolver
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.analysis.BrentSolver
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.analysis.NewtonSolver
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.analysis.PolynomialFunction
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.analysis.PolynomialSplineFunction
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.analysis.SecantSolver
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.complex.Complex
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.complex.ComplexFormat
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.distribution.AbstractContinuousDistribution
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.distribution.AbstractDistribution
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.distribution.AbstractIntegerDistribution
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.distribution.BinomialDistributionImpl
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.distribution.ChiSquaredDistributionImpl
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.distribution.ExponentialDistributionImpl
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.distribution.FDistributionImpl
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.distribution.GammaDistributionImpl
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.distribution.HypergeometricDistributionImpl
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.distribution.NormalDistributionImpl
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.distribution.PoissonDistributionImpl
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.distribution.TDistributionImpl
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.linear.BigMatrixImpl
Serialization id
serialVersionUID - Static variable in class org.apache.commons.math.linear.InvalidMatrixException
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.linear.MatrixIndexException
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.linear.RealMatrixImpl
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.random.EmpiricalDistributionImpl
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.random.RandomDataImpl
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.stat.Frequency
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.AbstractStorelessUnivariateStatistic
Serialization UID
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.AbstractUnivariateStatistic
Serialization UID
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Serialization UID
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.DescriptiveStatisticsImpl
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.StatisticalSummaryValues
Serialization id
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.SummaryStatistics
Serialization UID
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.moment.FirstMoment
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.moment.FourthMoment
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.moment.GeometricMean
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.moment.Kurtosis
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.moment.Mean
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.moment.SecondMoment
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.moment.Skewness
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.moment.StandardDeviation
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.moment.ThirdMoment
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.moment.Variance
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.rank.Max
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.rank.Median
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.rank.Min
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.rank.Percentile
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.summary.Product
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.summary.Sum
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.summary.SumOfLogs
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.stat.descriptive.summary.SumOfSquares
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.stat.regression.SimpleRegression
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.util.ContinuedFraction
Serialization UID
serialVersionUID - Static variable in class org.apache.commons.math.util.DefaultTransformer
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.util.ResizableDoubleArray
Serializable version identifier
serialVersionUID - Static variable in class org.apache.commons.math.util.TransformerMap
Serializable version identifier
setAbsoluteAccuracy(double) - Method in interface org.apache.commons.math.analysis.UnivariateRealSolver
Set the absolute accuracy.
setAbsoluteAccuracy(double) - Method in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Set the absolute accuracy.
setAlpha(double) - Method in interface org.apache.commons.math.distribution.GammaDistribution
Modify the shape parameter, alpha.
setAlpha(double) - Method in class org.apache.commons.math.distribution.GammaDistributionImpl
Modify the shape parameter, alpha.
setBeta(double) - Method in interface org.apache.commons.math.distribution.GammaDistribution
Modify the scale parameter, beta.
setBeta(double) - Method in class org.apache.commons.math.distribution.GammaDistributionImpl
Modify the scale parameter, beta.
setBiasCorrected(boolean) - Method in class org.apache.commons.math.stat.descriptive.moment.StandardDeviation
 
setBiasCorrected(boolean) - Method in class org.apache.commons.math.stat.descriptive.moment.Variance
 
setContractionCriteria(float) - Method in class org.apache.commons.math.util.ResizableDoubleArray
Sets the contraction criteria for this ExpandContractDoubleArray.
setDegreesOfFreedom(double) - Method in interface org.apache.commons.math.distribution.ChiSquaredDistribution
Modify the degrees of freedom.
setDegreesOfFreedom(double) - Method in class org.apache.commons.math.distribution.ChiSquaredDistributionImpl
Modify the degrees of freedom.
setDegreesOfFreedom(double) - Method in interface org.apache.commons.math.distribution.TDistribution
Modify the degrees of freedom.
setDegreesOfFreedom(double) - Method in class org.apache.commons.math.distribution.TDistributionImpl
Modify the degrees of freedom.
setDenominatorDegreesOfFreedom(double) - Method in interface org.apache.commons.math.distribution.FDistribution
Modify the denominator degrees of freedom.
setDenominatorDegreesOfFreedom(double) - Method in class org.apache.commons.math.distribution.FDistributionImpl
Modify the denominator degrees of freedom.
setElement(int, double) - Method in interface org.apache.commons.math.util.DoubleArray
Sets the element at the specified index.
setElement(int, double) - Method in class org.apache.commons.math.util.ResizableDoubleArray
Sets the element at the specified index.
setExpansionFactor(float) - Method in class org.apache.commons.math.util.ResizableDoubleArray
Sets the expansionFactor.
setExpansionMode(int) - Method in class org.apache.commons.math.util.ResizableDoubleArray
Sets the expansionMode.
setFunctionValueAccuracy(double) - Method in interface org.apache.commons.math.analysis.UnivariateRealSolver
Set the function value accuracy.
setFunctionValueAccuracy(double) - Method in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Set the function value accuracy.
setImaginaryCharacter(String) - Method in class org.apache.commons.math.complex.ComplexFormat
Modify the imaginaryCharacter.
setImaginaryFormat(NumberFormat) - Method in class org.apache.commons.math.complex.ComplexFormat
Modify the imaginaryFormat.
setInitialCapacity(int) - Method in class org.apache.commons.math.util.ResizableDoubleArray
Sets the initial capacity.
setMaximalIterationCount(int) - Method in interface org.apache.commons.math.analysis.UnivariateRealSolver
Set the upper limit for the number of iterations.
setMaximalIterationCount(int) - Method in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Set the upper limit for the number of iterations.
setMean(double) - Method in interface org.apache.commons.math.distribution.ExponentialDistribution
Modify the mean.
setMean(double) - Method in class org.apache.commons.math.distribution.ExponentialDistributionImpl
Modify the mean.
setMean(double) - Method in interface org.apache.commons.math.distribution.NormalDistribution
Modify the mean.
setMean(double) - Method in class org.apache.commons.math.distribution.NormalDistributionImpl
Modify the mean.
setMean(double) - Method in interface org.apache.commons.math.distribution.PoissonDistribution
Set the mean for the distribution.
setMean(double) - Method in class org.apache.commons.math.distribution.PoissonDistributionImpl
Set the Poisson mean for the distribution.
setMode(int) - Method in class org.apache.commons.math.random.ValueServer
Setter for property mode.
setMu(double) - Method in class org.apache.commons.math.random.ValueServer
Setter for property mu.
setNumElements(int) - Method in class org.apache.commons.math.util.ResizableDoubleArray
This function allows you to control the number of elements contained in this array, and can be used to "throw out" the last n values in an array.
setNumberOfSuccesses(int) - Method in interface org.apache.commons.math.distribution.HypergeometricDistribution
Modify the number of successes.
setNumberOfSuccesses(int) - Method in class org.apache.commons.math.distribution.HypergeometricDistributionImpl
Modify the number of successes.
setNumberOfTrials(int) - Method in interface org.apache.commons.math.distribution.BinomialDistribution
Change the number of trials for this distribution.
setNumberOfTrials(int) - Method in class org.apache.commons.math.distribution.BinomialDistributionImpl
Change the number of trials for this distribution.
setNumeratorDegreesOfFreedom(double) - Method in interface org.apache.commons.math.distribution.FDistribution
Modify the numerator degrees of freedom.
setNumeratorDegreesOfFreedom(double) - Method in class org.apache.commons.math.distribution.FDistributionImpl
Modify the numerator degrees of freedom.
setPopulationSize(int) - Method in interface org.apache.commons.math.distribution.HypergeometricDistribution
Modify the population size.
setPopulationSize(int) - Method in class org.apache.commons.math.distribution.HypergeometricDistributionImpl
Modify the population size.
setProbabilityOfSuccess(double) - Method in interface org.apache.commons.math.distribution.BinomialDistribution
Change the probability of success for this distribution.
setProbabilityOfSuccess(double) - Method in class org.apache.commons.math.distribution.BinomialDistributionImpl
Change the probability of success for this distribution.
setQuantile(double) - Method in class org.apache.commons.math.stat.descriptive.rank.Percentile
Sets the value of the quantile field (determines what percentile is computed when evaluate() is called with no quantile argument).
setRealFormat(NumberFormat) - Method in class org.apache.commons.math.complex.ComplexFormat
Modify the realFormat.
setRelativeAccuracy(double) - Method in interface org.apache.commons.math.analysis.UnivariateRealSolver
Set the relative accuracy.
setRelativeAccuracy(double) - Method in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Set the relative accuracy.
setResult(double, int) - Method in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Convenience function for implementations.
setRoundingMode(int) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Sets the rounding mode for decimal divisions.
setSampleSize(int) - Method in interface org.apache.commons.math.distribution.HypergeometricDistribution
Modify the sample size.
setSampleSize(int) - Method in class org.apache.commons.math.distribution.HypergeometricDistributionImpl
Modify the sample size.
setScale(int) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Sets the scale for division operations.
setSecureAlgorithm(String, String) - Method in class org.apache.commons.math.random.RandomDataImpl
Sets the PRNG algorithm for the underlying SecureRandom instance using the Security Provider API.
setSigma(double) - Method in class org.apache.commons.math.random.ValueServer
Setter for property sigma.
setStandardDeviation(double) - Method in interface org.apache.commons.math.distribution.NormalDistribution
Modify the standard deviation.
setStandardDeviation(double) - Method in class org.apache.commons.math.distribution.NormalDistributionImpl
Modify the standard deviation.
setValuesFileURL(String) - Method in class org.apache.commons.math.random.ValueServer
Sets the valuesFileURL using a string URL representation
setValuesFileURL(URL) - Method in class org.apache.commons.math.random.ValueServer
Sets the valuesFileURL
setWindowSize(int) - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
WindowSize controls the number of values which contribute to the values returned by Univariate.
setWindowSize(int) - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatisticsImpl
 
sign(double) - Static method in class org.apache.commons.math.util.MathUtils
Returns the sign for double precision x.
sign(float) - Static method in class org.apache.commons.math.util.MathUtils
Returns the sign for float value x.
sign(byte) - Static method in class org.apache.commons.math.util.MathUtils
Returns the sign for byte value x.
sign(short) - Static method in class org.apache.commons.math.util.MathUtils
Returns the sign for short value x.
sign(int) - Static method in class org.apache.commons.math.util.MathUtils
Returns the sign for int value x.
sign(long) - Static method in class org.apache.commons.math.util.MathUtils
Returns the sign for long value x.
sin(Complex) - Static method in class org.apache.commons.math.complex.ComplexUtils
Compute the sine for the given complex argument.
sinh(Complex) - Static method in class org.apache.commons.math.complex.ComplexUtils
Compute the hyperbolic sine for the given complex argument.
sinh(double) - Static method in class org.apache.commons.math.util.MathUtils
Returns the hyperbolic sine of x.
solve(double, double, double) - Method in class org.apache.commons.math.analysis.BisectionSolver
Find a zero in the given interval.
solve(double, double) - Method in class org.apache.commons.math.analysis.BisectionSolver
Find a zero root in the given interval.
solve(double, double, double) - Method in class org.apache.commons.math.analysis.BrentSolver
Find a zero in the given interval.
solve(double, double) - Method in class org.apache.commons.math.analysis.BrentSolver
Find a zero in the given interval.
solve(double, double) - Method in class org.apache.commons.math.analysis.NewtonSolver
Find a zero near the midpoint of min and max.
solve(double, double, double) - Method in class org.apache.commons.math.analysis.NewtonSolver
Find a zero near the value startValue.
solve(double, double, double) - Method in class org.apache.commons.math.analysis.SecantSolver
Find a zero in the given interval.
solve(double, double) - Method in class org.apache.commons.math.analysis.SecantSolver
Find a zero in the given interval.
solve(double, double) - Method in interface org.apache.commons.math.analysis.UnivariateRealSolver
Solve for a zero root in the given interval.
solve(double, double, double) - Method in interface org.apache.commons.math.analysis.UnivariateRealSolver
Solve for a zero in the given interval, start at startValue.
solve(UnivariateRealFunction, double, double) - Static method in class org.apache.commons.math.analysis.UnivariateRealSolverUtils
Convenience method to find a zero of a univariate real function.
solve(UnivariateRealFunction, double, double, double) - Static method in class org.apache.commons.math.analysis.UnivariateRealSolverUtils
Convenience method to find a zero of a univariate real function.
solve(BigDecimal[]) - Method in interface org.apache.commons.math.linear.BigMatrix
Returns the solution vector for a linear system with coefficient matrix = this and constant vector = b.
solve(BigMatrix) - Method in interface org.apache.commons.math.linear.BigMatrix
Returns a matrix of (column) solution vectors for linear systems with coefficient matrix = this and constant vectors = columns of b.
solve(BigDecimal[]) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns a matrix of (column) solution vectors for linear systems with coefficient matrix = this and constant vectors = columns of b.
solve(double[]) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns a matrix of (column) solution vectors for linear systems with coefficient matrix = this and constant vectors = columns of b.
solve(BigMatrix) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns a matrix of (column) solution vectors for linear systems with coefficient matrix = this and constant vectors = columns of b.
solve(double[]) - Method in interface org.apache.commons.math.linear.RealMatrix
Returns the solution vector for a linear system with coefficient matrix = this and constant vector = b.
solve(RealMatrix) - Method in interface org.apache.commons.math.linear.RealMatrix
Returns a matrix of (column) solution vectors for linear systems with coefficient matrix = this and constant vectors = columns of b.
solve(double[]) - Method in class org.apache.commons.math.linear.RealMatrixImpl
Returns a matrix of (column) solution vectors for linear systems with coefficient matrix = this and constant vectors = columns of b.
solve(RealMatrix) - Method in class org.apache.commons.math.linear.RealMatrixImpl
Returns a matrix of (column) solution vectors for linear systems with coefficient matrix = this and constant vectors = columns of b.
sqrt(Complex) - Static method in class org.apache.commons.math.complex.ComplexUtils
Compute the squre root for the given complex argument.
sqrt1z(Complex) - Static method in class org.apache.commons.math.complex.ComplexUtils
Compute the squre root of 1 - z2 for the given complex argument.
start() - Method in class org.apache.commons.math.util.ResizableDoubleArray
Returns the starting index of the internal array.
startIndex - Variable in class org.apache.commons.math.util.ResizableDoubleArray
The position of the first addressable element in the internal storage array.
subtract(Complex) - Method in class org.apache.commons.math.complex.Complex
Return the difference between this complex number and the given complex number.
subtract(BigMatrix) - Method in interface org.apache.commons.math.linear.BigMatrix
Compute this minus m.
subtract(BigMatrix) - Method in class org.apache.commons.math.linear.BigMatrixImpl
Compute this minus m.
subtract(RealMatrix) - Method in interface org.apache.commons.math.linear.RealMatrix
Compute this minus m.
subtract(RealMatrix) - Method in class org.apache.commons.math.linear.RealMatrixImpl
Compute this minus m.
sum(double[]) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the sum of the values in the input array, or Double.NaN if the array is empty.
sum(double[], int, int) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the sum of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
sum - Variable in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
sum of values that have been added
sumDifference(double[], double[]) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the sum of the (signed) differences between corresponding elements of the input arrays -- i.e., sum(sample1[i] - sample2[i]).
sumLog(double[]) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the sum of the natural logs of the entries in the input array, or Double.NaN if the array is empty.
sumLog(double[], int, int) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the sum of the natural logs of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
sumLog - Variable in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
sumLog of values that have been added
sumSq(double[]) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the sum of the squares of the entries in the input array, or Double.NaN if the array is empty.
sumSq(double[], int, int) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the sum of the squares of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
sumsq - Variable in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
sum of the square of each value that has been added

T

TDistribution - interface org.apache.commons.math.distribution.TDistribution.
Student's t-Distribution.
TDistributionImpl - class org.apache.commons.math.distribution.TDistributionImpl.
Default implementation of TDistribution.
TDistributionImpl(double) - Constructor for class org.apache.commons.math.distribution.TDistributionImpl
Create a t distribution using the given degrees of freedom.
TOO_SMALL - Static variable in class org.apache.commons.math.linear.BigMatrixImpl
Bound to determine effective singularity in LU decomposition
TOO_SMALL - Static variable in class org.apache.commons.math.linear.RealMatrixImpl
Bound to determine effective singularity in LU decomposition
TTest - interface org.apache.commons.math.stat.inference.TTest.
An interface for Student's t-tests.
TTestImpl - class org.apache.commons.math.stat.inference.TTestImpl.
Implements t-test statistics defined in the TTest interface.
TTestImpl() - Constructor for class org.apache.commons.math.stat.inference.TTestImpl
Default constructor.
ThirdMoment - class org.apache.commons.math.stat.descriptive.moment.ThirdMoment.
Computes a statistic related to the Third Central Moment.
ThirdMoment() - Constructor for class org.apache.commons.math.stat.descriptive.moment.ThirdMoment
Create a FourthMoment instance
TransformerMap - class org.apache.commons.math.util.TransformerMap.
This TansformerMap automates the transformation of of mixed object types.
TransformerMap() - Constructor for class org.apache.commons.math.util.TransformerMap
 
t(double, double[]) - Method in interface org.apache.commons.math.stat.inference.TTest
Computes a t statistic given observed values and a comparison constant.
t(double, StatisticalSummary) - Method in interface org.apache.commons.math.stat.inference.TTest
Computes a t statistic to use in comparing the mean of the dataset described by sampleStats to mu.
t(double[], double[]) - Method in interface org.apache.commons.math.stat.inference.TTest
Computes a 2-sample t statistic, without the hypothesis of equal subpopulation variances.
t(StatisticalSummary, StatisticalSummary) - Method in interface org.apache.commons.math.stat.inference.TTest
Computes a 2-sample t statistic , comparing the means of the datasets described by two StatisticalSummary instances, without the assumption of equal subpopulation variances.
t(double, double[]) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Computes a t statistic given observed values and a comparison constant.
t(double, StatisticalSummary) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Computes a t statistic to use in comparing the mean of the dataset described by sampleStats to mu.
t(double[], double[]) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Computes a 2-sample t statistic, without the hypothesis of equal subpopulation variances.
t(StatisticalSummary, StatisticalSummary) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Computes a 2-sample t statistic , comparing the means of the datasets described by two StatisticalSummary instances, without the assumption of equal subpopulation variances.
t(double, double, double, double) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Computes t test statistic for 1-sample t-test.
t(double, double, double, double, double, double) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Computes t test statistic for 2-sample t-test.
tTest(double, double[]) - Method in interface org.apache.commons.math.stat.inference.TTest
Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the input array with the constant mu.
tTest(double, double[], double) - Method in interface org.apache.commons.math.stat.inference.TTest
Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which sample is drawn equals mu.
tTest(double, StatisticalSummary) - Method in interface org.apache.commons.math.stat.inference.TTest
Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the dataset described by sampleStats with the constant mu.
tTest(double, StatisticalSummary, double) - Method in interface org.apache.commons.math.stat.inference.TTest
Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which the dataset described by stats is drawn equals mu.
tTest(double[], double[]) - Method in interface org.apache.commons.math.stat.inference.TTest
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays.
tTest(double[], double[], double) - Method in interface org.apache.commons.math.stat.inference.TTest
Performs a two-sided t-test evaluating the null hypothesis that sample1 and sample2 are drawn from populations with the same mean, with significance level alpha.
tTest(StatisticalSummary, StatisticalSummary) - Method in interface org.apache.commons.math.stat.inference.TTest
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances.
tTest(StatisticalSummary, StatisticalSummary, double) - Method in interface org.apache.commons.math.stat.inference.TTest
Performs a two-sided t-test evaluating the null hypothesis that sampleStats1 and sampleStats2 describe datasets drawn from populations with the same mean, with significance level alpha.
tTest(double, double[]) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the input array with the constant mu.
tTest(double, double[], double) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which sample is drawn equals mu.
tTest(double, StatisticalSummary) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the dataset described by sampleStats with the constant mu.
tTest(double, StatisticalSummary, double) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which the dataset described by stats is drawn equals mu.
tTest(double[], double[]) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays.
tTest(double[], double[], double) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Performs a two-sided t-test evaluating the null hypothesis that sample1 and sample2 are drawn from populations with the same mean, with significance level alpha.
tTest(StatisticalSummary, StatisticalSummary) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances.
tTest(StatisticalSummary, StatisticalSummary, double) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Performs a two-sided t-test evaluating the null hypothesis that sampleStats1 and sampleStats2 describe datasets drawn from populations with the same mean, with significance level alpha.
tTest(double, double, double, double) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Computes p-value for 2-sided, 1-sample t-test.
tTest(double, double, double, double, double, double) - Method in class org.apache.commons.math.stat.inference.TTestImpl
Computes p-value for 2-sided, 2-sample t-test.
tan(Complex) - Static method in class org.apache.commons.math.complex.ComplexUtils
Compute the tangent for the given complex argument.
tanh(Complex) - Static method in class org.apache.commons.math.complex.ComplexUtils
Compute the hyperbolic tangent for the given complex argument.
test(double[], int, int) - Method in class org.apache.commons.math.stat.descriptive.AbstractUnivariateStatistic
This method is used by evaluate(double[], int, int) methods to verify that the input parameters designate a subarray of positive length.
toString() - Method in class org.apache.commons.math.linear.BigMatrixImpl
 
toString() - Method in class org.apache.commons.math.linear.RealMatrixImpl
 
toString() - Method in class org.apache.commons.math.stat.Frequency
Return a string representation of this frequency distribution.
toString() - Method in class org.apache.commons.math.stat.descriptive.DescriptiveStatistics
Generates a text report displaying univariate statistics from values that have been added.
toString() - Method in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
Generates a text report displaying summary statistics from values that have been added.
transform(Object) - Method in class org.apache.commons.math.util.DefaultTransformer
 
transform(Object) - Method in interface org.apache.commons.math.util.NumberTransformer
Implementing this interface provides a facility to transform from Object to Double.
transform(Object) - Method in class org.apache.commons.math.util.TransformerMap
Attempts to transform the Object against the map of NumberTransformers.
transformers() - Method in class org.apache.commons.math.util.TransformerMap
Returns the Set of NumberTransformers used as values in the map.
transpose() - Method in interface org.apache.commons.math.linear.BigMatrix
Returns the transpose of this matrix.
transpose() - Method in class org.apache.commons.math.linear.BigMatrixImpl
Returns the transpose matrix.
transpose() - Method in interface org.apache.commons.math.linear.RealMatrix
Returns the transpose of this matrix.
transpose() - Method in class org.apache.commons.math.linear.RealMatrixImpl
Returns the transpose matrix.

U

UNIFORM_MODE - Static variable in class org.apache.commons.math.random.ValueServer
Uniform random deviates with mean = mu
UnivariateRealFunction - interface org.apache.commons.math.analysis.UnivariateRealFunction.
An interface representing a univariate real function.
UnivariateRealInterpolator - interface org.apache.commons.math.analysis.UnivariateRealInterpolator.
Interface representing a univariate real interpolating function.
UnivariateRealSolver - interface org.apache.commons.math.analysis.UnivariateRealSolver.
Interface for (univariate real) rootfinding algorithms.
UnivariateRealSolverFactory - class org.apache.commons.math.analysis.UnivariateRealSolverFactory.
Abstract factory class used to create UnivariateRealSolver instances.
UnivariateRealSolverFactory() - Constructor for class org.apache.commons.math.analysis.UnivariateRealSolverFactory
Default constructor.
UnivariateRealSolverFactoryImpl - class org.apache.commons.math.analysis.UnivariateRealSolverFactoryImpl.
A concrete UnivariateRealSolverFactory.
UnivariateRealSolverFactoryImpl() - Constructor for class org.apache.commons.math.analysis.UnivariateRealSolverFactoryImpl
Default constructor.
UnivariateRealSolverImpl - class org.apache.commons.math.analysis.UnivariateRealSolverImpl.
Provide a default implementation for several functions useful to generic solvers.
UnivariateRealSolverImpl(UnivariateRealFunction, int, double) - Constructor for class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Construct a solver with given iteration count and accuracy.
UnivariateRealSolverUtils - class org.apache.commons.math.analysis.UnivariateRealSolverUtils.
Utility routines for UnivariateRealSolver objects.
UnivariateStatistic - interface org.apache.commons.math.stat.descriptive.UnivariateStatistic.
Base evaluation interface implemented by all statistics.

V

ValueServer - class org.apache.commons.math.random.ValueServer.
Generates values for use in simulation applications.
ValueServer() - Constructor for class org.apache.commons.math.random.ValueServer
Creates new ValueServer
Variance - class org.apache.commons.math.stat.descriptive.moment.Variance.
Computes the variance of the available values.
Variance() - Constructor for class org.apache.commons.math.stat.descriptive.moment.Variance
Constructs a Variance with default (true) isBiasCorrected property.
Variance(SecondMoment) - Constructor for class org.apache.commons.math.stat.descriptive.moment.Variance
Constructs a Variance based on an external second moment.
Variance(boolean) - Constructor for class org.apache.commons.math.stat.descriptive.moment.Variance
Constructs a Variance with the specified isBiasCorrected property
Variance(boolean, SecondMoment) - Constructor for class org.apache.commons.math.stat.descriptive.moment.Variance
Constructs a Variance with the specified isBiasCorrected property and the supplied external second moment.
value(double) - Method in class org.apache.commons.math.analysis.PolynomialFunction
Compute the value of the function for the given argument.
value(double) - Method in class org.apache.commons.math.analysis.PolynomialSplineFunction
Compute the value for the function.
value(double) - Method in interface org.apache.commons.math.analysis.UnivariateRealFunction
Compute the value for the function.
valuesIterator() - Method in class org.apache.commons.math.stat.Frequency
Returns an Iterator over the set of values that have been added.
variance(double[]) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the variance of the entries in the input array, or Double.NaN if the array is empty.
variance(double[], int, int) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the variance of the entries in the specified portion of the input array, or Double.NaN if the designated subarray is empty.
variance(double[], double, int, int) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the variance of the entries in the specified portion of the input array, using the precomputed mean value.
variance(double[], double) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the variance of the entries in the input array, using the precomputed mean value.
variance - Variable in class org.apache.commons.math.stat.descriptive.SummaryStatisticsImpl
variance of values that have been added
varianceDifference(double[], double[], double) - Static method in class org.apache.commons.math.stat.StatUtils
Returns the variance of the (signed) differences between corresponding elements of the input arrays -- i.e., var(sample1[i] - sample2[i]).
verifyBracketing(double, double, UnivariateRealFunction) - Method in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Verifies that the endpoints specify an interval and the function takes opposite signs at the enpoints, throws IllegalArgumentException if not
verifyInterval(double, double) - Method in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Verifies that the endpoints specify an interval, throws IllegalArgumentException if not
verifySequence(double, double, double) - Method in class org.apache.commons.math.analysis.UnivariateRealSolverImpl
Verifies that lower < initial < upper throws IllegalArgumentException if not

W

windowSize - Variable in class org.apache.commons.math.stat.descriptive.DescriptiveStatisticsImpl
hold the window size

A B C D E F G H I K L M N O P R S T U V W

Copyright © 2003-2004 The Apache Software Foundation. All Rights Reserved.