| Classes in this File | Line Coverage | Branch Coverage | Complexity | ||||||||
| CauchyDistributionImpl |
|
| 1.9090909090909092;1.909 |
| 1 | /* |
|
| 2 | * Copyright 2005 The Apache Software Foundation. |
|
| 3 | * |
|
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
|
| 5 | * you may not use this file except in compliance with the License. |
|
| 6 | * You may obtain a copy of the License at |
|
| 7 | * |
|
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
|
| 9 | * |
|
| 10 | * Unless required by applicable law or agreed to in writing, software |
|
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
|
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
| 13 | * See the License for the specific language governing permissions and |
|
| 14 | * limitations under the License. |
|
| 15 | */ |
|
| 16 | ||
| 17 | package org.apache.commons.math.distribution; |
|
| 18 | ||
| 19 | import java.io.Serializable; |
|
| 20 | ||
| 21 | /** |
|
| 22 | * Default implementation of |
|
| 23 | * {@link org.apache.commons.math.distribution.CauchyDistribution}. |
|
| 24 | * |
|
| 25 | * @since 1.1 |
|
| 26 | * @version $Revision$ $Date: 2005-06-26 15:20:57 -0700 (Sun, 26 Jun 2005) $ |
|
| 27 | */ |
|
| 28 | public class CauchyDistributionImpl extends AbstractContinuousDistribution |
|
| 29 | implements CauchyDistribution, Serializable { |
|
| 30 | ||
| 31 | /** Serializable version identifier */ |
|
| 32 | static final long serialVersionUID = 8589540077390120676L; |
|
| 33 | ||
| 34 | /** The median of this distribution. */ |
|
| 35 | 20 | private double median = 0; |
| 36 | ||
| 37 | /** The scale of this distribution. */ |
|
| 38 | 20 | private double scale = 1; |
| 39 | ||
| 40 | /** |
|
| 41 | * Creates cauchy distribution with the medain equal to zero and scale |
|
| 42 | * equal to one. |
|
| 43 | */ |
|
| 44 | public CauchyDistributionImpl(){ |
|
| 45 | 0 | this(0.0, 1.0); |
| 46 | 0 | } |
| 47 | ||
| 48 | /** |
|
| 49 | * Create a cauchy distribution using the given median and scale. |
|
| 50 | * @param median median for this distribution |
|
| 51 | * @param s scale parameter for this distribution |
|
| 52 | */ |
|
| 53 | public CauchyDistributionImpl(double median, double s){ |
|
| 54 | 20 | super(); |
| 55 | 20 | setMedian(median); |
| 56 | 20 | setScale(s); |
| 57 | 16 | } |
| 58 | ||
| 59 | /** |
|
| 60 | * For this disbution, X, this method returns P(X < <code>x</code>). |
|
| 61 | * @param x the value at which the CDF is evaluated. |
|
| 62 | * @return CDF evaluted at <code>x</code>. |
|
| 63 | */ |
|
| 64 | public double cumulativeProbability(double x) { |
|
| 65 | 128 | return 0.5 + (Math.atan((x - median) / scale) / Math.PI); |
| 66 | } |
|
| 67 | ||
| 68 | /** |
|
| 69 | * Access the median. |
|
| 70 | * @return median for this distribution |
|
| 71 | */ |
|
| 72 | public double getMedian() { |
|
| 73 | 2 | return median; |
| 74 | } |
|
| 75 | ||
| 76 | /** |
|
| 77 | * Access the scale parameter. |
|
| 78 | * @return scale parameter for this distribution |
|
| 79 | */ |
|
| 80 | public double getScale() { |
|
| 81 | 2 | return scale; |
| 82 | } |
|
| 83 | ||
| 84 | /** |
|
| 85 | * For this distribution, X, this method returns the critical point x, such |
|
| 86 | * that P(X < x) = <code>p</code>. |
|
| 87 | * <p> |
|
| 88 | * Returns <code>Double.NEGATIVE_INFINITY</code> for p=0 and |
|
| 89 | * <code>Double.POSITIVE_INFINITY</code> for p=1. |
|
| 90 | * |
|
| 91 | * @param p the desired probability |
|
| 92 | * @return x, such that P(X < x) = <code>p</code> |
|
| 93 | * @throws IllegalArgumentException if <code>p</code> is not a valid |
|
| 94 | * probability. |
|
| 95 | */ |
|
| 96 | public double inverseCumulativeProbability(double p) { |
|
| 97 | double ret; |
|
| 98 | 28 | if (p < 0.0 || p > 1.0) { |
| 99 | 4 | throw new IllegalArgumentException |
| 100 | ("probability argument must be between 0 and 1 (inclusive)"); |
|
| 101 | 24 | } else if (p == 0) { |
| 102 | 2 | ret = Double.NEGATIVE_INFINITY; |
| 103 | 22 | } else if (p == 1) { |
| 104 | 2 | ret = Double.POSITIVE_INFINITY; |
| 105 | } else { |
|
| 106 | 20 | ret = median + scale * Math.tan(Math.PI * (p - .5)); |
| 107 | } |
|
| 108 | 24 | return ret; |
| 109 | } |
|
| 110 | ||
| 111 | /** |
|
| 112 | * Modify the median. |
|
| 113 | * @param median for this distribution |
|
| 114 | */ |
|
| 115 | public void setMedian(double median) { |
|
| 116 | 22 | this.median = median; |
| 117 | 22 | } |
| 118 | ||
| 119 | /** |
|
| 120 | * Modify the scale parameter. |
|
| 121 | * @param s scale parameter for this distribution |
|
| 122 | * @throws IllegalArgumentException if <code>sd</code> is not positive. |
|
| 123 | */ |
|
| 124 | public void setScale(double s) { |
|
| 125 | 26 | if (s <= 0.0) { |
| 126 | 8 | throw new IllegalArgumentException( |
| 127 | "Scale must be positive."); |
|
| 128 | } |
|
| 129 | 18 | scale = s; |
| 130 | 18 | } |
| 131 | ||
| 132 | /** |
|
| 133 | * Access the domain value lower bound, based on <code>p</code>, used to |
|
| 134 | * bracket a CDF root. This method is used by |
|
| 135 | * {@link #inverseCumulativeProbability(double)} to find critical values. |
|
| 136 | * |
|
| 137 | * @param p the desired probability for the critical value |
|
| 138 | * @return domain value lower bound, i.e. |
|
| 139 | * P(X < <i>lower bound</i>) < <code>p</code> |
|
| 140 | */ |
|
| 141 | protected double getDomainLowerBound(double p) { |
|
| 142 | double ret; |
|
| 143 | ||
| 144 | 0 | if (p < .5) { |
| 145 | 0 | ret = -Double.MAX_VALUE; |
| 146 | } else { |
|
| 147 | 0 | ret = getMedian(); |
| 148 | } |
|
| 149 | ||
| 150 | 0 | return ret; |
| 151 | } |
|
| 152 | ||
| 153 | /** |
|
| 154 | * Access the domain value upper bound, based on <code>p</code>, used to |
|
| 155 | * bracket a CDF root. This method is used by |
|
| 156 | * {@link #inverseCumulativeProbability(double)} to find critical values. |
|
| 157 | * |
|
| 158 | * @param p the desired probability for the critical value |
|
| 159 | * @return domain value upper bound, i.e. |
|
| 160 | * P(X < <i>upper bound</i>) > <code>p</code> |
|
| 161 | */ |
|
| 162 | protected double getDomainUpperBound(double p) { |
|
| 163 | double ret; |
|
| 164 | ||
| 165 | 0 | if (p < .5) { |
| 166 | 0 | ret = getMedian(); |
| 167 | } else { |
|
| 168 | 0 | ret = Double.MAX_VALUE; |
| 169 | } |
|
| 170 | ||
| 171 | 0 | return ret; |
| 172 | } |
|
| 173 | ||
| 174 | /** |
|
| 175 | * Access the initial domain value, based on <code>p</code>, used to |
|
| 176 | * bracket a CDF root. This method is used by |
|
| 177 | * {@link #inverseCumulativeProbability(double)} to find critical values. |
|
| 178 | * |
|
| 179 | * @param p the desired probability for the critical value |
|
| 180 | * @return initial domain value |
|
| 181 | */ |
|
| 182 | protected double getInitialDomain(double p) { |
|
| 183 | double ret; |
|
| 184 | ||
| 185 | 0 | if (p < .5) { |
| 186 | 0 | ret = getMedian() - getScale(); |
| 187 | 0 | } else if (p > .5) { |
| 188 | 0 | ret = getMedian() + getScale(); |
| 189 | } else { |
|
| 190 | 0 | ret = getMedian(); |
| 191 | } |
|
| 192 | ||
| 193 | 0 | return ret; |
| 194 | } |
|
| 195 | } |