| Classes in this File | Line Coverage | Branch Coverage | Complexity | ||||||||
| ExponentialDistributionImpl |
|
| 2.25;2.25 |
| 1 | /* |
|
| 2 | * Copyright 2003-2004 The Apache Software Foundation. |
|
| 3 | * |
|
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
|
| 5 | * you may not use this file except in compliance with the License. |
|
| 6 | * You may obtain a copy of the License at |
|
| 7 | * |
|
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
|
| 9 | * |
|
| 10 | * Unless required by applicable law or agreed to in writing, software |
|
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
|
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
| 13 | * See the License for the specific language governing permissions and |
|
| 14 | * limitations under the License. |
|
| 15 | */ |
|
| 16 | package org.apache.commons.math.distribution; |
|
| 17 | ||
| 18 | import java.io.Serializable; |
|
| 19 | ||
| 20 | import org.apache.commons.math.MathException; |
|
| 21 | ||
| 22 | /** |
|
| 23 | * The default implementation of {@link ExponentialDistribution} |
|
| 24 | * |
|
| 25 | * @version $Revision$ $Date: 2005-02-26 05:11:52 -0800 (Sat, 26 Feb 2005) $ |
|
| 26 | */ |
|
| 27 | public class ExponentialDistributionImpl extends AbstractContinuousDistribution |
|
| 28 | implements ExponentialDistribution, Serializable { |
|
| 29 | ||
| 30 | /** Serializable version identifier */ |
|
| 31 | static final long serialVersionUID = 2401296428283614780L; |
|
| 32 | ||
| 33 | /** The mean of this distribution. */ |
|
| 34 | private double mean; |
|
| 35 | ||
| 36 | /** |
|
| 37 | * Create a exponential distribution with the given mean. |
|
| 38 | * @param mean mean of this distribution. |
|
| 39 | */ |
|
| 40 | public ExponentialDistributionImpl(double mean) { |
|
| 41 | 22 | super(); |
| 42 | 22 | setMean(mean); |
| 43 | 18 | } |
| 44 | ||
| 45 | /** |
|
| 46 | * Modify the mean. |
|
| 47 | * @param mean the new mean. |
|
| 48 | * @throws IllegalArgumentException if <code>mean</code> is not positive. |
|
| 49 | */ |
|
| 50 | public void setMean(double mean) { |
|
| 51 | 26 | if (mean <= 0.0) { |
| 52 | 6 | throw new IllegalArgumentException("mean must be positive."); |
| 53 | } |
|
| 54 | 20 | this.mean = mean; |
| 55 | 20 | } |
| 56 | ||
| 57 | /** |
|
| 58 | * Access the mean. |
|
| 59 | * @return the mean. |
|
| 60 | */ |
|
| 61 | public double getMean() { |
|
| 62 | 158 | return mean; |
| 63 | } |
|
| 64 | ||
| 65 | /** |
|
| 66 | * For this disbution, X, this method returns P(X < x). |
|
| 67 | * |
|
| 68 | * The implementation of this method is based on: |
|
| 69 | * <ul> |
|
| 70 | * <li> |
|
| 71 | * <a href="http://mathworld.wolfram.com/ExponentialDistribution.html"> |
|
| 72 | * Exponential Distribution</a>, equation (1).</li> |
|
| 73 | * </ul> |
|
| 74 | * |
|
| 75 | * @param x the value at which the CDF is evaluated. |
|
| 76 | * @return CDF for this distribution. |
|
| 77 | * @throws MathException if the cumulative probability can not be |
|
| 78 | * computed due to convergence or other numerical errors. |
|
| 79 | */ |
|
| 80 | public double cumulativeProbability(double x) throws MathException{ |
|
| 81 | double ret; |
|
| 82 | 136 | if (x <= 0.0) { |
| 83 | 4 | ret = 0.0; |
| 84 | } else { |
|
| 85 | 132 | ret = 1.0 - Math.exp(-x / getMean()); |
| 86 | } |
|
| 87 | 136 | return ret; |
| 88 | } |
|
| 89 | ||
| 90 | /** |
|
| 91 | * For this distribution, X, this method returns the critical point x, such |
|
| 92 | * that P(X < x) = <code>p</code>. |
|
| 93 | * <p> |
|
| 94 | * Returns 0 for p=0 and <code>Double.POSITIVE_INFINITY</code> for p=1. |
|
| 95 | * |
|
| 96 | * @param p the desired probability |
|
| 97 | * @return x, such that P(X < x) = <code>p</code> |
|
| 98 | * @throws MathException if the inverse cumulative probability can not be |
|
| 99 | * computed due to convergence or other numerical errors. |
|
| 100 | * @throws IllegalArgumentException if p < 0 or p > 1. |
|
| 101 | */ |
|
| 102 | public double inverseCumulativeProbability(double p) throws MathException { |
|
| 103 | double ret; |
|
| 104 | ||
| 105 | 28 | if (p < 0.0 || p > 1.0) { |
| 106 | 4 | throw new IllegalArgumentException |
| 107 | ("probability argument must be between 0 and 1 (inclusive)"); |
|
| 108 | 24 | } else if (p == 1.0) { |
| 109 | 2 | ret = Double.POSITIVE_INFINITY; |
| 110 | } else { |
|
| 111 | 22 | ret = -getMean() * Math.log(1.0 - p); |
| 112 | } |
|
| 113 | ||
| 114 | 24 | return ret; |
| 115 | } |
|
| 116 | ||
| 117 | /** |
|
| 118 | * Access the domain value lower bound, based on <code>p</code>, used to |
|
| 119 | * bracket a CDF root. |
|
| 120 | * |
|
| 121 | * @param p the desired probability for the critical value |
|
| 122 | * @return domain value lower bound, i.e. |
|
| 123 | * P(X < <i>lower bound</i>) < <code>p</code> |
|
| 124 | */ |
|
| 125 | protected double getDomainLowerBound(double p) { |
|
| 126 | 0 | return 0; |
| 127 | } |
|
| 128 | ||
| 129 | /** |
|
| 130 | * Access the domain value upper bound, based on <code>p</code>, used to |
|
| 131 | * bracket a CDF root. |
|
| 132 | * |
|
| 133 | * @param p the desired probability for the critical value |
|
| 134 | * @return domain value upper bound, i.e. |
|
| 135 | * P(X < <i>upper bound</i>) > <code>p</code> |
|
| 136 | */ |
|
| 137 | protected double getDomainUpperBound(double p) { |
|
| 138 | // NOTE: exponential is skewed to the left |
|
| 139 | // NOTE: therefore, P(X < μ) > .5 |
|
| 140 | ||
| 141 | 0 | if (p < .5) { |
| 142 | // use mean |
|
| 143 | 0 | return getMean(); |
| 144 | } else { |
|
| 145 | // use max |
|
| 146 | 0 | return Double.MAX_VALUE; |
| 147 | } |
|
| 148 | } |
|
| 149 | ||
| 150 | /** |
|
| 151 | * Access the initial domain value, based on <code>p</code>, used to |
|
| 152 | * bracket a CDF root. |
|
| 153 | * |
|
| 154 | * @param p the desired probability for the critical value |
|
| 155 | * @return initial domain value |
|
| 156 | */ |
|
| 157 | protected double getInitialDomain(double p) { |
|
| 158 | // TODO: try to improve on this estimate |
|
| 159 | // Exponential is skewed to the left, therefore, P(X < μ) > .5 |
|
| 160 | 0 | if (p < .5) { |
| 161 | // use 1/2 mean |
|
| 162 | 0 | return getMean() * .5; |
| 163 | } else { |
|
| 164 | // use mean |
|
| 165 | 0 | return getMean(); |
| 166 | } |
|
| 167 | } |
|
| 168 | } |