| Classes in this File | Line Coverage | Branch Coverage | Complexity | ||||||||
| HypergeometricDistributionImpl |
|
| 1.9411764705882353;1.941 |
| 1 | /* |
|
| 2 | * Copyright 2003-2004 The Apache Software Foundation. |
|
| 3 | * |
|
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
|
| 5 | * you may not use this file except in compliance with the License. |
|
| 6 | * You may obtain a copy of the License at |
|
| 7 | * |
|
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
|
| 9 | * |
|
| 10 | * Unless required by applicable law or agreed to in writing, software |
|
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
|
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
| 13 | * See the License for the specific language governing permissions and |
|
| 14 | * limitations under the License. |
|
| 15 | */ |
|
| 16 | ||
| 17 | package org.apache.commons.math.distribution; |
|
| 18 | ||
| 19 | import java.io.Serializable; |
|
| 20 | ||
| 21 | import org.apache.commons.math.util.MathUtils; |
|
| 22 | ||
| 23 | /** |
|
| 24 | * The default implementation of {@link HypergeometricDistribution}. |
|
| 25 | * |
|
| 26 | * @version $Revision$ $Date: 2005-08-26 07:05:45 -0700 (Fri, 26 Aug 2005) $ |
|
| 27 | */ |
|
| 28 | public class HypergeometricDistributionImpl extends AbstractIntegerDistribution |
|
| 29 | implements HypergeometricDistribution, Serializable |
|
| 30 | { |
|
| 31 | ||
| 32 | /** Serializable version identifier */ |
|
| 33 | static final long serialVersionUID = -436928820673516179L; |
|
| 34 | ||
| 35 | /** The number of successes in the population. */ |
|
| 36 | private int numberOfSuccesses; |
|
| 37 | ||
| 38 | /** The population size. */ |
|
| 39 | private int populationSize; |
|
| 40 | ||
| 41 | /** The sample size. */ |
|
| 42 | private int sampleSize; |
|
| 43 | ||
| 44 | /** |
|
| 45 | * Construct a new hypergeometric distribution with the given the population |
|
| 46 | * size, the number of successes in the population, and the sample size. |
|
| 47 | * @param populationSize the population size. |
|
| 48 | * @param numberOfSuccesses number of successes in the population. |
|
| 49 | * @param sampleSize the sample size. |
|
| 50 | */ |
|
| 51 | public HypergeometricDistributionImpl(int populationSize, |
|
| 52 | int numberOfSuccesses, int sampleSize) { |
|
| 53 | 46 | super(); |
| 54 | 46 | if (numberOfSuccesses > populationSize) { |
| 55 | 4 | throw new IllegalArgumentException( |
| 56 | "number of successes must be less than or equal to " + |
|
| 57 | "population size"); |
|
| 58 | } |
|
| 59 | 42 | if (sampleSize > populationSize) { |
| 60 | 2 | throw new IllegalArgumentException( |
| 61 | "sample size must be less than or equal to population size"); |
|
| 62 | } |
|
| 63 | 40 | setPopulationSize(populationSize); |
| 64 | 40 | setSampleSize(sampleSize); |
| 65 | 38 | setNumberOfSuccesses(numberOfSuccesses); |
| 66 | 36 | } |
| 67 | ||
| 68 | /** |
|
| 69 | * For this disbution, X, this method returns P(X ≤ x). |
|
| 70 | * @param x the value at which the PDF is evaluated. |
|
| 71 | * @return PDF for this distribution. |
|
| 72 | */ |
|
| 73 | public double cumulativeProbability(int x) { |
|
| 74 | double ret; |
|
| 75 | ||
| 76 | 272 | int n = getPopulationSize(); |
| 77 | 272 | int m = getNumberOfSuccesses(); |
| 78 | 272 | int k = getSampleSize(); |
| 79 | ||
| 80 | 272 | int[] domain = getDomain(n, m, k); |
| 81 | 272 | if (x < domain[0]) { |
| 82 | 32 | ret = 0.0; |
| 83 | 240 | } else if(x >= domain[1]) { |
| 84 | 40 | ret = 1.0; |
| 85 | } else { |
|
| 86 | 200 | ret = innerCumulativeProbability(domain[0], x, 1, n, m, k); |
| 87 | } |
|
| 88 | ||
| 89 | 272 | return ret; |
| 90 | } |
|
| 91 | ||
| 92 | /** |
|
| 93 | * Return the domain for the given hypergeometric distribution parameters. |
|
| 94 | * @param n the population size. |
|
| 95 | * @param m number of successes in the population. |
|
| 96 | * @param k the sample size. |
|
| 97 | * @return a two element array containing the lower and upper bounds of the |
|
| 98 | * hypergeometric distribution. |
|
| 99 | */ |
|
| 100 | private int[] getDomain(int n, int m, int k){ |
|
| 101 | 462 | return new int[]{ |
| 102 | getLowerDomain(n, m, k), |
|
| 103 | getUpperDomain(m, k) |
|
| 104 | }; |
|
| 105 | } |
|
| 106 | ||
| 107 | /** |
|
| 108 | * Access the domain value lower bound, based on <code>p</code>, used to |
|
| 109 | * bracket a PDF root. |
|
| 110 | * |
|
| 111 | * @param p the desired probability for the critical value |
|
| 112 | * @return domain value lower bound, i.e. |
|
| 113 | * P(X < <i>lower bound</i>) < <code>p</code> |
|
| 114 | */ |
|
| 115 | protected int getDomainLowerBound(double p) { |
|
| 116 | 36 | return getLowerDomain(getPopulationSize(), getNumberOfSuccesses(), |
| 117 | getSampleSize()); |
|
| 118 | } |
|
| 119 | ||
| 120 | /** |
|
| 121 | * Access the domain value upper bound, based on <code>p</code>, used to |
|
| 122 | * bracket a PDF root. |
|
| 123 | * |
|
| 124 | * @param p the desired probability for the critical value |
|
| 125 | * @return domain value upper bound, i.e. |
|
| 126 | * P(X < <i>upper bound</i>) > <code>p</code> |
|
| 127 | */ |
|
| 128 | protected int getDomainUpperBound(double p) { |
|
| 129 | 36 | return getUpperDomain(getSampleSize(), getNumberOfSuccesses()); |
| 130 | } |
|
| 131 | ||
| 132 | /** |
|
| 133 | * Return the lowest domain value for the given hypergeometric distribution |
|
| 134 | * parameters. |
|
| 135 | * @param n the population size. |
|
| 136 | * @param m number of successes in the population. |
|
| 137 | * @param k the sample size. |
|
| 138 | * @return the lowest domain value of the hypergeometric distribution. |
|
| 139 | */ |
|
| 140 | private int getLowerDomain(int n, int m, int k) { |
|
| 141 | 498 | return Math.max(0, m - (n - k)); |
| 142 | } |
|
| 143 | ||
| 144 | /** |
|
| 145 | * Access the number of successes. |
|
| 146 | * @return the number of successes. |
|
| 147 | */ |
|
| 148 | public int getNumberOfSuccesses() { |
|
| 149 | 534 | return numberOfSuccesses; |
| 150 | } |
|
| 151 | ||
| 152 | /** |
|
| 153 | * Access the population size. |
|
| 154 | * @return the population size. |
|
| 155 | */ |
|
| 156 | public int getPopulationSize() { |
|
| 157 | 500 | return populationSize; |
| 158 | } |
|
| 159 | ||
| 160 | /** |
|
| 161 | * Access the sample size. |
|
| 162 | * @return the sample size. |
|
| 163 | */ |
|
| 164 | public int getSampleSize() { |
|
| 165 | 534 | return sampleSize; |
| 166 | } |
|
| 167 | ||
| 168 | /** |
|
| 169 | * Return the highest domain value for the given hypergeometric distribution |
|
| 170 | * parameters. |
|
| 171 | * @param m number of successes in the population. |
|
| 172 | * @param k the sample size. |
|
| 173 | * @return the highest domain value of the hypergeometric distribution. |
|
| 174 | */ |
|
| 175 | private int getUpperDomain(int m, int k){ |
|
| 176 | 498 | return Math.min(k, m); |
| 177 | } |
|
| 178 | ||
| 179 | /** |
|
| 180 | * For this disbution, X, this method returns P(X = x). |
|
| 181 | * |
|
| 182 | * @param x the value at which the PMF is evaluated. |
|
| 183 | * @return PMF for this distribution. |
|
| 184 | */ |
|
| 185 | public double probability(int x) { |
|
| 186 | double ret; |
|
| 187 | ||
| 188 | 118 | int n = getPopulationSize(); |
| 189 | 118 | int m = getNumberOfSuccesses(); |
| 190 | 118 | int k = getSampleSize(); |
| 191 | ||
| 192 | 118 | int[] domain = getDomain(n, m, k); |
| 193 | 118 | if(x < domain[0] || x > domain[1]){ |
| 194 | 28 | ret = 0.0; |
| 195 | } else { |
|
| 196 | 90 | ret = probability(n, m, k, x); |
| 197 | } |
|
| 198 | ||
| 199 | 118 | return ret; |
| 200 | } |
|
| 201 | ||
| 202 | /** |
|
| 203 | * For the disbution, X, defined by the given hypergeometric distribution |
|
| 204 | * parameters, this method returns P(X = x). |
|
| 205 | * |
|
| 206 | * @param n the population size. |
|
| 207 | * @param m number of successes in the population. |
|
| 208 | * @param k the sample size. |
|
| 209 | * @param x the value at which the PMF is evaluated. |
|
| 210 | * @return PMF for the distribution. |
|
| 211 | */ |
|
| 212 | private double probability(int n, int m, int k, int x) { |
|
| 213 | 5942 | return Math.exp(MathUtils.binomialCoefficientLog(m, x) + |
| 214 | MathUtils.binomialCoefficientLog(n - m, k - x) - |
|
| 215 | MathUtils.binomialCoefficientLog(n, k)); |
|
| 216 | } |
|
| 217 | ||
| 218 | /** |
|
| 219 | * Modify the number of successes. |
|
| 220 | * @param num the new number of successes. |
|
| 221 | * @throws IllegalArgumentException if <code>num</code> is negative. |
|
| 222 | */ |
|
| 223 | public void setNumberOfSuccesses(int num) { |
|
| 224 | 38 | if(num < 0){ |
| 225 | 2 | throw new IllegalArgumentException( |
| 226 | "number of successes must be non-negative."); |
|
| 227 | } |
|
| 228 | 36 | numberOfSuccesses = num; |
| 229 | 36 | } |
| 230 | ||
| 231 | /** |
|
| 232 | * Modify the population size. |
|
| 233 | * @param size the new population size. |
|
| 234 | * @throws IllegalArgumentException if <code>size</code> is not positive. |
|
| 235 | */ |
|
| 236 | public void setPopulationSize(int size) { |
|
| 237 | 44 | if(size <= 0){ |
| 238 | 2 | throw new IllegalArgumentException( |
| 239 | "population size must be positive."); |
|
| 240 | } |
|
| 241 | 42 | populationSize = size; |
| 242 | 42 | } |
| 243 | ||
| 244 | /** |
|
| 245 | * Modify the sample size. |
|
| 246 | * @param size the new sample size. |
|
| 247 | * @throws IllegalArgumentException if <code>size</code> is negative. |
|
| 248 | */ |
|
| 249 | public void setSampleSize(int size) { |
|
| 250 | 40 | if (size < 0) { |
| 251 | 2 | throw new IllegalArgumentException( |
| 252 | "sample size must be non-negative."); |
|
| 253 | } |
|
| 254 | 38 | sampleSize = size; |
| 255 | 38 | } |
| 256 | ||
| 257 | /** |
|
| 258 | * For this disbution, X, this method returns P(X ≥ x). |
|
| 259 | * @param x the value at which the CDF is evaluated. |
|
| 260 | * @return upper tail CDF for this distribution. |
|
| 261 | * @since 1.1 |
|
| 262 | */ |
|
| 263 | public double upperCumulativeProbability(int x) { |
|
| 264 | double ret; |
|
| 265 | ||
| 266 | 72 | int n = getPopulationSize(); |
| 267 | 72 | int m = getNumberOfSuccesses(); |
| 268 | 72 | int k = getSampleSize(); |
| 269 | ||
| 270 | 72 | int[] domain = getDomain(n, m, k); |
| 271 | 72 | if (x < domain[0]) { |
| 272 | 0 | ret = 1.0; |
| 273 | 72 | } else if(x > domain[1]) { |
| 274 | 0 | ret = 0.0; |
| 275 | } else { |
|
| 276 | 72 | ret = innerCumulativeProbability(domain[1], x, -1, n, m, k); |
| 277 | } |
|
| 278 | ||
| 279 | 72 | return ret; |
| 280 | } |
|
| 281 | ||
| 282 | /** |
|
| 283 | * For this disbution, X, this method returns P(x0 ≤ X ≤ x1). This |
|
| 284 | * probability is computed by summing the point probabilities for the values |
|
| 285 | * x0, x0 + 1, x0 + 2, ..., x1, in the order directed by dx. |
|
| 286 | * @param x0 the inclusive, lower bound |
|
| 287 | * @param x1 the inclusive, upper bound |
|
| 288 | * @param dx the direction of summation. 1 indicates summing from x0 to x1. |
|
| 289 | * 0 indicates summing from x1 to x0. |
|
| 290 | * @param n the population size. |
|
| 291 | * @param m number of successes in the population. |
|
| 292 | * @param k the sample size. |
|
| 293 | * @return P(x0 ≤ X ≤ x1). |
|
| 294 | */ |
|
| 295 | private double innerCumulativeProbability( |
|
| 296 | int x0, int x1, int dx, int n, int m, int k) |
|
| 297 | { |
|
| 298 | 272 | double ret = probability(n, m, k, x0); |
| 299 | 5852 | while (x0 != x1) { |
| 300 | 5580 | x0 += dx; |
| 301 | 5580 | ret += probability(n, m, k, x0); |
| 302 | } |
|
| 303 | 272 | return ret; |
| 304 | } |
|
| 305 | } |