| Classes in this File | Line Coverage | Branch Coverage | Complexity | ||||||||
| MathUtils |
|
| 3.090909090909091;3.091 |
| 1 | /* |
|
| 2 | * Copyright 2003-2004 The Apache Software Foundation. |
|
| 3 | * |
|
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
|
| 5 | * you may not use this file except in compliance with the License. |
|
| 6 | * You may obtain a copy of the License at |
|
| 7 | * |
|
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
|
| 9 | * |
|
| 10 | * Unless required by applicable law or agreed to in writing, software |
|
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
|
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
| 13 | * See the License for the specific language governing permissions and |
|
| 14 | * limitations under the License. |
|
| 15 | */ |
|
| 16 | ||
| 17 | package org.apache.commons.math.util; |
|
| 18 | ||
| 19 | import java.math.BigDecimal; |
|
| 20 | ||
| 21 | /** |
|
| 22 | * Some useful additions to the built-in functions in {@link Math}. |
|
| 23 | * @version $Revision$ $Date: 2005-08-22 19:27:17 -0700 (Mon, 22 Aug 2005) $ |
|
| 24 | */ |
|
| 25 | public final class MathUtils { |
|
| 26 | ||
| 27 | /** -1.0 cast as a byte. */ |
|
| 28 | private static final byte NB = (byte)-1; |
|
| 29 | ||
| 30 | /** -1.0 cast as a short. */ |
|
| 31 | private static final short NS = (short)-1; |
|
| 32 | ||
| 33 | /** 1.0 cast as a byte. */ |
|
| 34 | private static final byte PB = (byte)1; |
|
| 35 | ||
| 36 | /** 1.0 cast as a short. */ |
|
| 37 | private static final short PS = (short)1; |
|
| 38 | ||
| 39 | /** 0.0 cast as a byte. */ |
|
| 40 | private static final byte ZB = (byte)0; |
|
| 41 | ||
| 42 | /** 0.0 cast as a short. */ |
|
| 43 | private static final short ZS = (short)0; |
|
| 44 | ||
| 45 | /** |
|
| 46 | * Private Constructor |
|
| 47 | */ |
|
| 48 | private MathUtils() { |
|
| 49 | 0 | super(); |
| 50 | 0 | } |
| 51 | ||
| 52 | /** |
|
| 53 | * Add two integers, checking for overflow. |
|
| 54 | * |
|
| 55 | * @param x an addend |
|
| 56 | * @param y an addend |
|
| 57 | * @return the sum <code>x+y</code> |
|
| 58 | * @throws ArithmeticException if the result can not be represented as an |
|
| 59 | * int |
|
| 60 | * @since 1.1 |
|
| 61 | */ |
|
| 62 | public static int addAndCheck(int x, int y) { |
|
| 63 | 22 | long s = (long)x + (long)y; |
| 64 | 22 | if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) { |
| 65 | 10 | throw new ArithmeticException("overflow: add"); |
| 66 | } |
|
| 67 | 12 | return (int)s; |
| 68 | } |
|
| 69 | ||
| 70 | /** |
|
| 71 | * Returns an exact representation of the <a |
|
| 72 | * href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial |
|
| 73 | * Coefficient</a>, "<code>n choose k</code>", the number of |
|
| 74 | * <code>k</code>-element subsets that can be selected from an |
|
| 75 | * <code>n</code>-element set. |
|
| 76 | * <p> |
|
| 77 | * <Strong>Preconditions</strong>: |
|
| 78 | * <ul> |
|
| 79 | * <li> <code>0 <= k <= n </code> (otherwise |
|
| 80 | * <code>IllegalArgumentException</code> is thrown)</li> |
|
| 81 | * <li> The result is small enough to fit into a <code>long</code>. The |
|
| 82 | * largest value of <code>n</code> for which all coefficients are |
|
| 83 | * <code> < Long.MAX_VALUE</code> is 66. If the computed value exceeds |
|
| 84 | * <code>Long.MAX_VALUE</code> an <code>ArithMeticException |
|
| 85 | * </code> is |
|
| 86 | * thrown.</li> |
|
| 87 | * </ul> |
|
| 88 | * |
|
| 89 | * @param n the size of the set |
|
| 90 | * @param k the size of the subsets to be counted |
|
| 91 | * @return <code>n choose k</code> |
|
| 92 | * @throws IllegalArgumentException if preconditions are not met. |
|
| 93 | * @throws ArithmeticException if the result is too large to be represented |
|
| 94 | * by a long integer. |
|
| 95 | */ |
|
| 96 | public static long binomialCoefficient(final int n, final int k) { |
|
| 97 | 140 | if (n < k) { |
| 98 | 2 | throw new IllegalArgumentException( |
| 99 | "must have n >= k for binomial coefficient (n,k)"); |
|
| 100 | } |
|
| 101 | 138 | if (n < 0) { |
| 102 | 0 | throw new IllegalArgumentException( |
| 103 | "must have n >= 0 for binomial coefficient (n,k)"); |
|
| 104 | } |
|
| 105 | 138 | if ((n == k) || (k == 0)) { |
| 106 | 46 | return 1; |
| 107 | } |
|
| 108 | 92 | if ((k == 1) || (k == n - 1)) { |
| 109 | 38 | return n; |
| 110 | } |
|
| 111 | ||
| 112 | 54 | long result = Math.round(binomialCoefficientDouble(n, k)); |
| 113 | 54 | if (result == Long.MAX_VALUE) { |
| 114 | 2 | throw new ArithmeticException( |
| 115 | "result too large to represent in a long integer"); |
|
| 116 | } |
|
| 117 | 52 | return result; |
| 118 | } |
|
| 119 | ||
| 120 | /** |
|
| 121 | * Returns a <code>double</code> representation of the <a |
|
| 122 | * href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial |
|
| 123 | * Coefficient</a>, "<code>n choose k</code>", the number of |
|
| 124 | * <code>k</code>-element subsets that can be selected from an |
|
| 125 | * <code>n</code>-element set. |
|
| 126 | * <p> |
|
| 127 | * <Strong>Preconditions</strong>: |
|
| 128 | * <ul> |
|
| 129 | * <li> <code>0 <= k <= n </code> (otherwise |
|
| 130 | * <code>IllegalArgumentException</code> is thrown)</li> |
|
| 131 | * <li> The result is small enough to fit into a <code>double</code>. The |
|
| 132 | * largest value of <code>n</code> for which all coefficients are < |
|
| 133 | * Double.MAX_VALUE is 1029. If the computed value exceeds Double.MAX_VALUE, |
|
| 134 | * Double.POSITIVE_INFINITY is returned</li> |
|
| 135 | * </ul> |
|
| 136 | * |
|
| 137 | * @param n the size of the set |
|
| 138 | * @param k the size of the subsets to be counted |
|
| 139 | * @return <code>n choose k</code> |
|
| 140 | * @throws IllegalArgumentException if preconditions are not met. |
|
| 141 | */ |
|
| 142 | public static double binomialCoefficientDouble(final int n, final int k) { |
|
| 143 | 202 | return Math.floor(Math.exp(binomialCoefficientLog(n, k)) + 0.5); |
| 144 | } |
|
| 145 | ||
| 146 | /** |
|
| 147 | * Returns the natural <code>log</code> of the <a |
|
| 148 | * href="http://mathworld.wolfram.com/BinomialCoefficient.html"> Binomial |
|
| 149 | * Coefficient</a>, "<code>n choose k</code>", the number of |
|
| 150 | * <code>k</code>-element subsets that can be selected from an |
|
| 151 | * <code>n</code>-element set. |
|
| 152 | * <p> |
|
| 153 | * <Strong>Preconditions</strong>: |
|
| 154 | * <ul> |
|
| 155 | * <li> <code>0 <= k <= n </code> (otherwise |
|
| 156 | * <code>IllegalArgumentException</code> is thrown)</li> |
|
| 157 | * </ul> |
|
| 158 | * |
|
| 159 | * @param n the size of the set |
|
| 160 | * @param k the size of the subsets to be counted |
|
| 161 | * @return <code>n choose k</code> |
|
| 162 | * @throws IllegalArgumentException if preconditions are not met. |
|
| 163 | */ |
|
| 164 | public static double binomialCoefficientLog(final int n, final int k) { |
|
| 165 | 18140 | if (n < k) { |
| 166 | 4 | throw new IllegalArgumentException( |
| 167 | "must have n >= k for binomial coefficient (n,k)"); |
|
| 168 | } |
|
| 169 | 18136 | if (n < 0) { |
| 170 | 0 | throw new IllegalArgumentException( |
| 171 | "must have n >= 0 for binomial coefficient (n,k)"); |
|
| 172 | } |
|
| 173 | 18136 | if ((n == k) || (k == 0)) { |
| 174 | 520 | return 0; |
| 175 | } |
|
| 176 | 17616 | if ((k == 1) || (k == n - 1)) { |
| 177 | 496 | return Math.log((double)n); |
| 178 | } |
|
| 179 | 17120 | double logSum = 0; |
| 180 | ||
| 181 | // n!/k! |
|
| 182 | 121648084 | for (int i = k + 1; i <= n; i++) { |
| 183 | 121630964 | logSum += Math.log((double)i); |
| 184 | } |
|
| 185 | ||
| 186 | // divide by (n-k)! |
|
| 187 | 121630964 | for (int i = 2; i <= n - k; i++) { |
| 188 | 121613844 | logSum -= Math.log((double)i); |
| 189 | } |
|
| 190 | ||
| 191 | 17120 | return logSum; |
| 192 | } |
|
| 193 | ||
| 194 | /** |
|
| 195 | * Returns the <a href="http://mathworld.wolfram.com/HyperbolicCosine.html"> |
|
| 196 | * hyperbolic cosine</a> of x. |
|
| 197 | * |
|
| 198 | * @param x double value for which to find the hyperbolic cosine |
|
| 199 | * @return hyperbolic cosine of x |
|
| 200 | */ |
|
| 201 | public static double cosh(double x) { |
|
| 202 | 16 | return (Math.exp(x) + Math.exp(-x)) / 2.0; |
| 203 | } |
|
| 204 | ||
| 205 | /** |
|
| 206 | * Returns true iff both arguments are NaN or neither is NaN and they are |
|
| 207 | * equal |
|
| 208 | * |
|
| 209 | * @param x first value |
|
| 210 | * @param y second value |
|
| 211 | * @return true if the values are equal or both are NaN |
|
| 212 | */ |
|
| 213 | public static boolean equals(double x, double y) { |
|
| 214 | 2374 | return ((Double.isNaN(x) && Double.isNaN(y)) || x == y); |
| 215 | } |
|
| 216 | ||
| 217 | /** |
|
| 218 | * Returns n!. Shorthand for <code>n</code> <a |
|
| 219 | * href="http://mathworld.wolfram.com/Factorial.html"> Factorial</a>, the |
|
| 220 | * product of the numbers <code>1,...,n</code>. |
|
| 221 | * <p> |
|
| 222 | * <Strong>Preconditions</strong>: |
|
| 223 | * <ul> |
|
| 224 | * <li> <code>n >= 0</code> (otherwise |
|
| 225 | * <code>IllegalArgumentException</code> is thrown)</li> |
|
| 226 | * <li> The result is small enough to fit into a <code>long</code>. The |
|
| 227 | * largest value of <code>n</code> for which <code>n!</code> < |
|
| 228 | * Long.MAX_VALUE</code> is 20. If the computed value exceeds <code>Long.MAX_VALUE</code> |
|
| 229 | * an <code>ArithMeticException </code> is thrown.</li> |
|
| 230 | * </ul> |
|
| 231 | * </p> |
|
| 232 | * |
|
| 233 | * @param n argument |
|
| 234 | * @return <code>n!</code> |
|
| 235 | * @throws ArithmeticException if the result is too large to be represented |
|
| 236 | * by a long integer. |
|
| 237 | * @throws IllegalArgumentException if n < 0 |
|
| 238 | */ |
|
| 239 | public static long factorial(final int n) { |
|
| 240 | 24 | long result = Math.round(factorialDouble(n)); |
| 241 | 22 | if (result == Long.MAX_VALUE) { |
| 242 | 2 | throw new ArithmeticException( |
| 243 | "result too large to represent in a long integer"); |
|
| 244 | } |
|
| 245 | 20 | return result; |
| 246 | } |
|
| 247 | ||
| 248 | /** |
|
| 249 | * Returns n!. Shorthand for <code>n</code> <a |
|
| 250 | * href="http://mathworld.wolfram.com/Factorial.html"> Factorial</a>, the |
|
| 251 | * product of the numbers <code>1,...,n</code> as a <code>double</code>. |
|
| 252 | * <p> |
|
| 253 | * <Strong>Preconditions</strong>: |
|
| 254 | * <ul> |
|
| 255 | * <li> <code>n >= 0</code> (otherwise |
|
| 256 | * <code>IllegalArgumentException</code> is thrown)</li> |
|
| 257 | * <li> The result is small enough to fit into a <code>double</code>. The |
|
| 258 | * largest value of <code>n</code> for which <code>n!</code> < |
|
| 259 | * Double.MAX_VALUE</code> is 170. If the computed value exceeds |
|
| 260 | * Double.MAX_VALUE, Double.POSITIVE_INFINITY is returned</li> |
|
| 261 | * </ul> |
|
| 262 | * </p> |
|
| 263 | * |
|
| 264 | * @param n argument |
|
| 265 | * @return <code>n!</code> |
|
| 266 | * @throws IllegalArgumentException if n < 0 |
|
| 267 | */ |
|
| 268 | public static double factorialDouble(final int n) { |
|
| 269 | 64 | if (n < 0) { |
| 270 | 4 | throw new IllegalArgumentException("must have n >= 0 for n!"); |
| 271 | } |
|
| 272 | 60 | return Math.floor(Math.exp(factorialLog(n)) + 0.5); |
| 273 | } |
|
| 274 | ||
| 275 | /** |
|
| 276 | * Returns the natural logarithm of n!. |
|
| 277 | * <p> |
|
| 278 | * <Strong>Preconditions</strong>: |
|
| 279 | * <ul> |
|
| 280 | * <li> <code>n >= 0</code> (otherwise |
|
| 281 | * <code>IllegalArgumentException</code> is thrown)</li> |
|
| 282 | * </ul> |
|
| 283 | * |
|
| 284 | * @param n argument |
|
| 285 | * @return <code>n!</code> |
|
| 286 | * @throws IllegalArgumentException if preconditions are not met. |
|
| 287 | */ |
|
| 288 | public static double factorialLog(final int n) { |
|
| 289 | 82 | if (n < 0) { |
| 290 | 2 | throw new IllegalArgumentException("must have n > 0 for n!"); |
| 291 | } |
|
| 292 | 80 | double logSum = 0; |
| 293 | 752 | for (int i = 2; i <= n; i++) { |
| 294 | 672 | logSum += Math.log((double)i); |
| 295 | } |
|
| 296 | 80 | return logSum; |
| 297 | } |
|
| 298 | ||
| 299 | /** |
|
| 300 | * <p> |
|
| 301 | * Gets the greatest common divisor of the absolute value of two numbers, |
|
| 302 | * using the "binary gcd" method which avoids division and modulo |
|
| 303 | * operations. See Knuth 4.5.2 algorithm B. This algorithm is due to Josef |
|
| 304 | * Stein (1961). |
|
| 305 | * </p> |
|
| 306 | * |
|
| 307 | * @param u a non-zero number |
|
| 308 | * @param v a non-zero number |
|
| 309 | * @return the greatest common divisor, never zero |
|
| 310 | * @since 1.1 |
|
| 311 | */ |
|
| 312 | public static int gcd(int u, int v) { |
|
| 313 | 528 | if (u * v == 0) { |
| 314 | 38 | return (Math.abs(u) + Math.abs(v)); |
| 315 | } |
|
| 316 | // keep u and v negative, as negative integers range down to |
|
| 317 | // -2^31, while positive numbers can only be as large as 2^31-1 |
|
| 318 | // (i.e. we can't necessarily negate a negative number without |
|
| 319 | // overflow) |
|
| 320 | /* assert u!=0 && v!=0; */ |
|
| 321 | 490 | if (u > 0) { |
| 322 | 366 | u = -u; |
| 323 | } // make u negative |
|
| 324 | 490 | if (v > 0) { |
| 325 | 480 | v = -v; |
| 326 | } // make v negative |
|
| 327 | // B1. [Find power of 2] |
|
| 328 | 490 | int k = 0; |
| 329 | 526 | while ((u & 1) == 0 && (v & 1) == 0 && k < 31) { // while u and v are |
| 330 | // both even... |
|
| 331 | 36 | u /= 2; |
| 332 | 36 | v /= 2; |
| 333 | 36 | k++; // cast out twos. |
| 334 | } |
|
| 335 | 490 | if (k == 31) { |
| 336 | 0 | throw new ArithmeticException("overflow: gcd is 2^31"); |
| 337 | } |
|
| 338 | // B2. Initialize: u and v have been divided by 2^k and at least |
|
| 339 | // one is odd. |
|
| 340 | 490 | int t = ((u & 1) == 1) ? v : -(u / 2)/* B3 */; |
| 341 | // t negative: u was odd, v may be even (t replaces v) |
|
| 342 | // t positive: u was even, v is odd (t replaces u) |
|
| 343 | do { |
|
| 344 | /* assert u<0 && v<0; */ |
|
| 345 | // B4/B3: cast out twos from t. |
|
| 346 | 5214 | while ((t & 1) == 0) { // while t is even.. |
| 347 | 2082 | t /= 2; // cast out twos |
| 348 | } |
|
| 349 | // B5 [reset max(u,v)] |
|
| 350 | 3132 | if (t > 0) { |
| 351 | 1378 | u = -t; |
| 352 | } else { |
|
| 353 | 1754 | v = t; |
| 354 | } |
|
| 355 | // B6/B3. at this point both u and v should be odd. |
|
| 356 | 3132 | t = (v - u) / 2; |
| 357 | // |u| larger: t positive (replace u) |
|
| 358 | // |v| larger: t negative (replace v) |
|
| 359 | 3132 | } while (t != 0); |
| 360 | 490 | return -u * (1 << k); // gcd is u*2^k |
| 361 | } |
|
| 362 | ||
| 363 | /** |
|
| 364 | * Returns an integer hash code representing the given double value. |
|
| 365 | * |
|
| 366 | * @param value the value to be hashed |
|
| 367 | * @return the hash code |
|
| 368 | */ |
|
| 369 | public static int hash(double value) { |
|
| 370 | 1956 | long bits = Double.doubleToLongBits(value); |
| 371 | 1956 | return (int)(bits ^ (bits >>> 32)); |
| 372 | } |
|
| 373 | ||
| 374 | /** |
|
| 375 | * For a byte value x, this method returns (byte)(+1) if x >= 0 and |
|
| 376 | * (byte)(-1) if x < 0. |
|
| 377 | * |
|
| 378 | * @param x the value, a byte |
|
| 379 | * @return (byte)(+1) or (byte)(-1), depending on the sign of x |
|
| 380 | */ |
|
| 381 | public static byte indicator(final byte x) { |
|
| 382 | 10 | return (x >= ZB) ? PB : NB; |
| 383 | } |
|
| 384 | ||
| 385 | /** |
|
| 386 | * For a double precision value x, this method returns +1.0 if x >= 0 and |
|
| 387 | * -1.0 if x < 0. Returns <code>NaN</code> if <code>x</code> is |
|
| 388 | * <code>NaN</code>. |
|
| 389 | * |
|
| 390 | * @param x the value, a double |
|
| 391 | * @return +1.0 or -1.0, depending on the sign of x |
|
| 392 | */ |
|
| 393 | public static double indicator(final double x) { |
|
| 394 | 204 | if (Double.isNaN(x)) { |
| 395 | 2 | return Double.NaN; |
| 396 | } |
|
| 397 | 202 | return (x >= 0.0) ? 1.0 : -1.0; |
| 398 | } |
|
| 399 | ||
| 400 | /** |
|
| 401 | * For a float value x, this method returns +1.0F if x >= 0 and -1.0F if x < |
|
| 402 | * 0. Returns <code>NaN</code> if <code>x</code> is <code>NaN</code>. |
|
| 403 | * |
|
| 404 | * @param x the value, a float |
|
| 405 | * @return +1.0F or -1.0F, depending on the sign of x |
|
| 406 | */ |
|
| 407 | public static float indicator(final float x) { |
|
| 408 | 146 | if (Float.isNaN(x)) { |
| 409 | 2 | return Float.NaN; |
| 410 | } |
|
| 411 | 144 | return (x >= 0.0F) ? 1.0F : -1.0F; |
| 412 | } |
|
| 413 | ||
| 414 | /** |
|
| 415 | * For an int value x, this method returns +1 if x >= 0 and -1 if x < 0. |
|
| 416 | * |
|
| 417 | * @param x the value, an int |
|
| 418 | * @return +1 or -1, depending on the sign of x |
|
| 419 | */ |
|
| 420 | public static int indicator(final int x) { |
|
| 421 | 10 | return (x >= 0) ? 1 : -1; |
| 422 | } |
|
| 423 | ||
| 424 | /** |
|
| 425 | * For a long value x, this method returns +1L if x >= 0 and -1L if x < 0. |
|
| 426 | * |
|
| 427 | * @param x the value, a long |
|
| 428 | * @return +1L or -1L, depending on the sign of x |
|
| 429 | */ |
|
| 430 | public static long indicator(final long x) { |
|
| 431 | 10 | return (x >= 0L) ? 1L : -1L; |
| 432 | } |
|
| 433 | ||
| 434 | /** |
|
| 435 | * For a short value x, this method returns (short)(+1) if x >= 0 and |
|
| 436 | * (short)(-1) if x < 0. |
|
| 437 | * |
|
| 438 | * @param x the value, a short |
|
| 439 | * @return (short)(+1) or (short)(-1), depending on the sign of x |
|
| 440 | */ |
|
| 441 | public static short indicator(final short x) { |
|
| 442 | 10 | return (x >= ZS) ? PS : NS; |
| 443 | } |
|
| 444 | ||
| 445 | /** |
|
| 446 | * Returns the least common multiple between two integer values. |
|
| 447 | * |
|
| 448 | * @param a the first integer value. |
|
| 449 | * @param b the second integer value. |
|
| 450 | * @return the least common multiple between a and b. |
|
| 451 | * @throws ArithmeticException if the lcm is too large to store as an int |
|
| 452 | * @since 1.1 |
|
| 453 | */ |
|
| 454 | public static int lcm(int a, int b) { |
|
| 455 | 18 | return Math.abs(mulAndCheck(a / gcd(a, b), b)); |
| 456 | } |
|
| 457 | ||
| 458 | /** |
|
| 459 | * Multiply two integers, checking for overflow. |
|
| 460 | * |
|
| 461 | * @param x a factor |
|
| 462 | * @param y a factor |
|
| 463 | * @return the product <code>x*y</code> |
|
| 464 | * @throws ArithmeticException if the result can not be represented as an |
|
| 465 | * int |
|
| 466 | * @since 1.1 |
|
| 467 | */ |
|
| 468 | public static int mulAndCheck(int x, int y) { |
|
| 469 | 178 | long m = ((long)x) * ((long)y); |
| 470 | 178 | if (m < Integer.MIN_VALUE || m > Integer.MAX_VALUE) { |
| 471 | 16 | throw new ArithmeticException("overflow: mul"); |
| 472 | } |
|
| 473 | 162 | return (int)m; |
| 474 | } |
|
| 475 | ||
| 476 | /** |
|
| 477 | * Round the given value to the specified number of decimal places. The |
|
| 478 | * value is rounded using the {@link BigDecimal#ROUND_HALF_UP} method. |
|
| 479 | * |
|
| 480 | * @param x the value to round. |
|
| 481 | * @param scale the number of digits to the right of the decimal point. |
|
| 482 | * @return the rounded value. |
|
| 483 | * @since 1.1 |
|
| 484 | */ |
|
| 485 | public static double round(double x, int scale) { |
|
| 486 | 28 | return round(x, scale, BigDecimal.ROUND_HALF_UP); |
| 487 | } |
|
| 488 | ||
| 489 | /** |
|
| 490 | * Round the given value to the specified number of decimal places. The |
|
| 491 | * value is rounded using the given method which is any method defined in |
|
| 492 | * {@link BigDecimal}. |
|
| 493 | * |
|
| 494 | * @param x the value to round. |
|
| 495 | * @param scale the number of digits to the right of the decimal point. |
|
| 496 | * @param roundingMethod the rounding method as defined in |
|
| 497 | * {@link BigDecimal}. |
|
| 498 | * @return the rounded value. |
|
| 499 | * @since 1.1 |
|
| 500 | */ |
|
| 501 | public static double round(double x, int scale, int roundingMethod) { |
|
| 502 | 136 | double sign = indicator(x); |
| 503 | 136 | double factor = Math.pow(10.0, scale) * sign; |
| 504 | 136 | return roundUnscaled(x * factor, sign, roundingMethod) / factor; |
| 505 | } |
|
| 506 | ||
| 507 | /** |
|
| 508 | * Round the given value to the specified number of decimal places. The |
|
| 509 | * value is rounding using the {@link BigDecimal#ROUND_HALF_UP} method. |
|
| 510 | * |
|
| 511 | * @param x the value to round. |
|
| 512 | * @param scale the number of digits to the right of the decimal point. |
|
| 513 | * @return the rounded value. |
|
| 514 | * @since 1.1 |
|
| 515 | */ |
|
| 516 | public static float round(float x, int scale) { |
|
| 517 | 28 | return round(x, scale, BigDecimal.ROUND_HALF_UP); |
| 518 | } |
|
| 519 | ||
| 520 | /** |
|
| 521 | * Round the given value to the specified number of decimal places. The |
|
| 522 | * value is rounded using the given method which is any method defined in |
|
| 523 | * {@link BigDecimal}. |
|
| 524 | * |
|
| 525 | * @param x the value to round. |
|
| 526 | * @param scale the number of digits to the right of the decimal point. |
|
| 527 | * @param roundingMethod the rounding method as defined in |
|
| 528 | * {@link BigDecimal}. |
|
| 529 | * @return the rounded value. |
|
| 530 | * @since 1.1 |
|
| 531 | */ |
|
| 532 | public static float round(float x, int scale, int roundingMethod) { |
|
| 533 | 136 | float sign = indicator(x); |
| 534 | 136 | float factor = (float)Math.pow(10.0f, scale) * sign; |
| 535 | 136 | return (float)roundUnscaled(x * factor, sign, roundingMethod) / factor; |
| 536 | } |
|
| 537 | ||
| 538 | /** |
|
| 539 | * Round the given non-negative, value to the "nearest" integer. Nearest is |
|
| 540 | * determined by the rounding method specified. Rounding methods are defined |
|
| 541 | * in {@link BigDecimal}. |
|
| 542 | * |
|
| 543 | * @param unscaled the value to round. |
|
| 544 | * @param sign the sign of the original, scaled value. |
|
| 545 | * @param roundingMethod the rounding method as defined in |
|
| 546 | * {@link BigDecimal}. |
|
| 547 | * @return the rounded value. |
|
| 548 | * @since 1.1 |
|
| 549 | */ |
|
| 550 | private static double roundUnscaled(double unscaled, double sign, |
|
| 551 | int roundingMethod) { |
|
| 552 | 272 | switch (roundingMethod) { |
| 553 | case BigDecimal.ROUND_CEILING : |
|
| 554 | 24 | if (sign == -1) { |
| 555 | 12 | unscaled = Math.floor(unscaled); |
| 556 | } else { |
|
| 557 | 12 | unscaled = Math.ceil(unscaled); |
| 558 | } |
|
| 559 | 12 | break; |
| 560 | case BigDecimal.ROUND_DOWN : |
|
| 561 | 24 | unscaled = Math.floor(unscaled); |
| 562 | 24 | break; |
| 563 | case BigDecimal.ROUND_FLOOR : |
|
| 564 | 24 | if (sign == -1) { |
| 565 | 12 | unscaled = Math.ceil(unscaled); |
| 566 | } else { |
|
| 567 | 12 | unscaled = Math.floor(unscaled); |
| 568 | } |
|
| 569 | 12 | break; |
| 570 | case BigDecimal.ROUND_HALF_DOWN : { |
|
| 571 | 32 | double fraction = Math.abs(unscaled - Math.floor(unscaled)); |
| 572 | 32 | if (fraction > 0.5) { |
| 573 | 16 | unscaled = Math.ceil(unscaled); |
| 574 | } else { |
|
| 575 | 16 | unscaled = Math.floor(unscaled); |
| 576 | } |
|
| 577 | 16 | break; |
| 578 | } |
|
| 579 | case BigDecimal.ROUND_HALF_EVEN : { |
|
| 580 | 40 | double fraction = Math.abs(unscaled - Math.floor(unscaled)); |
| 581 | 40 | if (fraction > 0.5) { |
| 582 | 16 | unscaled = Math.ceil(unscaled); |
| 583 | 24 | } else if (fraction < 0.5) { |
| 584 | 8 | unscaled = Math.floor(unscaled); |
| 585 | } else { |
|
| 586 | 16 | if (Math.floor(unscaled) / 2.0 == Math.floor(Math |
| 587 | .floor(unscaled) / 2.0)) { // even |
|
| 588 | 8 | unscaled = Math.floor(unscaled); |
| 589 | } else { // odd |
|
| 590 | 8 | unscaled = Math.ceil(unscaled); |
| 591 | } |
|
| 592 | } |
|
| 593 | 8 | break; |
| 594 | } |
|
| 595 | case BigDecimal.ROUND_HALF_UP : { |
|
| 596 | 88 | double fraction = Math.abs(unscaled - Math.floor(unscaled)); |
| 597 | 88 | if (fraction >= 0.5) { |
| 598 | 60 | unscaled = Math.ceil(unscaled); |
| 599 | } else { |
|
| 600 | 28 | unscaled = Math.floor(unscaled); |
| 601 | } |
|
| 602 | 28 | break; |
| 603 | } |
|
| 604 | case BigDecimal.ROUND_UNNECESSARY : |
|
| 605 | 12 | if (unscaled != Math.floor(unscaled)) { |
| 606 | 4 | throw new ArithmeticException("Inexact result from rounding"); |
| 607 | } |
|
| 608 | break; |
|
| 609 | case BigDecimal.ROUND_UP : |
|
| 610 | 24 | unscaled = Math.ceil(unscaled); |
| 611 | 24 | break; |
| 612 | default : |
|
| 613 | 4 | throw new IllegalArgumentException("Invalid rounding method."); |
| 614 | } |
|
| 615 | 264 | return unscaled; |
| 616 | } |
|
| 617 | ||
| 618 | /** |
|
| 619 | * Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a> |
|
| 620 | * for byte value <code>x</code>. |
|
| 621 | * <p> |
|
| 622 | * For a byte value x, this method returns (byte)(+1) if x > 0, (byte)(0) if |
|
| 623 | * x = 0, and (byte)(-1) if x < 0. |
|
| 624 | * |
|
| 625 | * @param x the value, a byte |
|
| 626 | * @return (byte)(+1), (byte)(0), or (byte)(-1), depending on the sign of x |
|
| 627 | */ |
|
| 628 | public static byte sign(final byte x) { |
|
| 629 | 0 | return (x == ZB) ? ZB : (x > ZB) ? PB : NB; |
| 630 | } |
|
| 631 | ||
| 632 | /** |
|
| 633 | * Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a> |
|
| 634 | * for double precision <code>x</code>. |
|
| 635 | * <p> |
|
| 636 | * For a double value <code>x</code>, this method returns |
|
| 637 | * <code>+1.0</code> if <code>x > 0</code>, <code>0.0</code> if |
|
| 638 | * <code>x = 0.0</code>, and <code>-1.0</code> if <code>x < 0</code>. |
|
| 639 | * Returns <code>NaN</code> if <code>x</code> is <code>NaN</code>. |
|
| 640 | * |
|
| 641 | * @param x the value, a double |
|
| 642 | * @return +1.0, 0.0, or -1.0, depending on the sign of x |
|
| 643 | */ |
|
| 644 | public static double sign(final double x) { |
|
| 645 | 328 | if (Double.isNaN(x)) { |
| 646 | 0 | return Double.NaN; |
| 647 | } |
|
| 648 | 328 | return (x == 0.0) ? 0.0 : (x > 0.0) ? 1.0 : -1.0; |
| 649 | } |
|
| 650 | ||
| 651 | /** |
|
| 652 | * Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a> |
|
| 653 | * for float value <code>x</code>. |
|
| 654 | * <p> |
|
| 655 | * For a float value x, this method returns +1.0F if x > 0, 0.0F if x = |
|
| 656 | * 0.0F, and -1.0F if x < 0. Returns <code>NaN</code> if <code>x</code> |
|
| 657 | * is <code>NaN</code>. |
|
| 658 | * |
|
| 659 | * @param x the value, a float |
|
| 660 | * @return +1.0F, 0.0F, or -1.0F, depending on the sign of x |
|
| 661 | */ |
|
| 662 | public static float sign(final float x) { |
|
| 663 | 0 | if (Float.isNaN(x)) { |
| 664 | 0 | return Float.NaN; |
| 665 | } |
|
| 666 | 0 | return (x == 0.0F) ? 0.0F : (x > 0.0F) ? 1.0F : -1.0F; |
| 667 | } |
|
| 668 | ||
| 669 | /** |
|
| 670 | * Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a> |
|
| 671 | * for int value <code>x</code>. |
|
| 672 | * <p> |
|
| 673 | * For an int value x, this method returns +1 if x > 0, 0 if x = 0, and -1 |
|
| 674 | * if x < 0. |
|
| 675 | * |
|
| 676 | * @param x the value, an int |
|
| 677 | * @return +1, 0, or -1, depending on the sign of x |
|
| 678 | */ |
|
| 679 | public static int sign(final int x) { |
|
| 680 | 4 | return (x == 0) ? 0 : (x > 0) ? 1 : -1; |
| 681 | } |
|
| 682 | ||
| 683 | /** |
|
| 684 | * Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a> |
|
| 685 | * for long value <code>x</code>. |
|
| 686 | * <p> |
|
| 687 | * For a long value x, this method returns +1L if x > 0, 0L if x = 0, and |
|
| 688 | * -1L if x < 0. |
|
| 689 | * |
|
| 690 | * @param x the value, a long |
|
| 691 | * @return +1L, 0L, or -1L, depending on the sign of x |
|
| 692 | */ |
|
| 693 | public static long sign(final long x) { |
|
| 694 | 0 | return (x == 0L) ? 0L : (x > 0L) ? 1L : -1L; |
| 695 | } |
|
| 696 | ||
| 697 | /** |
|
| 698 | * Returns the <a href="http://mathworld.wolfram.com/Sign.html"> sign</a> |
|
| 699 | * for short value <code>x</code>. |
|
| 700 | * <p> |
|
| 701 | * For a short value x, this method returns (short)(+1) if x > 0, (short)(0) |
|
| 702 | * if x = 0, and (short)(-1) if x < 0. |
|
| 703 | * |
|
| 704 | * @param x the value, a short |
|
| 705 | * @return (short)(+1), (short)(0), or (short)(-1), depending on the sign of |
|
| 706 | * x |
|
| 707 | */ |
|
| 708 | public static short sign(final short x) { |
|
| 709 | 0 | return (x == ZS) ? ZS : (x > ZS) ? PS : NS; |
| 710 | } |
|
| 711 | ||
| 712 | /** |
|
| 713 | * Returns the <a href="http://mathworld.wolfram.com/HyperbolicSine.html"> |
|
| 714 | * hyperbolic sine</a> of x. |
|
| 715 | * |
|
| 716 | * @param x double value for which to find the hyperbolic sine |
|
| 717 | * @return hyperbolic sine of x |
|
| 718 | */ |
|
| 719 | public static double sinh(double x) { |
|
| 720 | 16 | return (Math.exp(x) - Math.exp(-x)) / 2.0; |
| 721 | } |
|
| 722 | ||
| 723 | /** |
|
| 724 | * Subtract two integers, checking for overflow. |
|
| 725 | * |
|
| 726 | * @param x the minuend |
|
| 727 | * @param y the subtrahend |
|
| 728 | * @return the difference <code>x-y</code> |
|
| 729 | * @throws ArithmeticException if the result can not be represented as an |
|
| 730 | * int |
|
| 731 | * @since 1.1 |
|
| 732 | */ |
|
| 733 | public static int subAndCheck(int x, int y) { |
|
| 734 | 20 | long s = (long)x - (long)y; |
| 735 | 20 | if (s < Integer.MIN_VALUE || s > Integer.MAX_VALUE) { |
| 736 | 8 | throw new ArithmeticException("overflow: add"); |
| 737 | } |
|
| 738 | 12 | return (int)s; |
| 739 | } |
|
| 740 | } |