Uses of Class
org.apache.commons.math.MathException

Packages that use MathException
org.apache.commons.math Common classes used throughout the commons-math library. 
org.apache.commons.math.analysis Implementations of common numerical analysis procedures, including root finding and function interpolation. 
org.apache.commons.math.distribution Implementations of common discrete and continuous distributions. 
org.apache.commons.math.special Implementations of special functions such as Beta and Gamma. 
org.apache.commons.math.stat.inference Classes providing hypothesis testing and confidence interval construction. 
org.apache.commons.math.stat.regression Statistical routines involving multivariate data. 
org.apache.commons.math.util Convience routines and common data structure used throughout the commons-math library. 
 

Uses of MathException in org.apache.commons.math
 

Subclasses of MathException in org.apache.commons.math
 class ConvergenceException
          Error thrown when a numerical computation can not be performed because the numerical result failed to converge to a finite value.
 class FunctionEvaluationException
          Exeption thrown when an error occurs evaluating a function.
 class MathConfigurationException
          Signals a configuration problem with any of the factory methods.
 

Uses of MathException in org.apache.commons.math.analysis
 

Methods in org.apache.commons.math.analysis that throw MathException
 UnivariateRealFunction UnivariateRealInterpolator.interpolate(double[] xval, double[] yval)
          Computes an interpolating function for the data set.
 

Uses of MathException in org.apache.commons.math.distribution
 

Methods in org.apache.commons.math.distribution that throw MathException
 double TDistributionImpl.cumulativeProbability(double x)
          For this disbution, X, this method returns P(X < x).
 double TDistributionImpl.inverseCumulativeProbability(double p)
          For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
 double PoissonDistributionImpl.cumulativeProbability(int x)
          The probability distribution function P(X <= x) for a Poisson distribution.
 double PoissonDistributionImpl.normalApproximateProbability(int x)
          Calculates the Poisson distribution function using a normal approximation.
 double NormalDistributionImpl.cumulativeProbability(double x)
          For this disbution, X, this method returns P(X < x).
 double NormalDistributionImpl.inverseCumulativeProbability(double p)
          For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
 double HypergeometricDistributionImpl.cumulativeProbability(int x)
          For this disbution, X, this method returns P(X ≤ x).
 double GammaDistributionImpl.cumulativeProbability(double x)
          For this disbution, X, this method returns P(X < x).
 double GammaDistributionImpl.inverseCumulativeProbability(double p)
          For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
 double FDistributionImpl.cumulativeProbability(double x)
          For this disbution, X, this method returns P(X < x).
 double FDistributionImpl.inverseCumulativeProbability(double p)
          For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
 double ExponentialDistributionImpl.cumulativeProbability(double x)
          For this disbution, X, this method returns P(X < x).
 double ExponentialDistributionImpl.inverseCumulativeProbability(double p)
          For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
 double PoissonDistribution.normalApproximateProbability(int x)
          Calculates the Poisson distribution function using a normal approximation.
 double ChiSquaredDistributionImpl.cumulativeProbability(double x)
          For this disbution, X, this method returns P(X < x).
 double ChiSquaredDistributionImpl.inverseCumulativeProbability(double p)
          For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
 double BinomialDistributionImpl.cumulativeProbability(int x)
          For this distribution, X, this method returns P(X ≤ x).
 int BinomialDistributionImpl.inverseCumulativeProbability(double p)
          For this distribution, X, this method returns the largest x, such that P(X ≤ x) ≤ p.
 double IntegerDistribution.cumulativeProbability(int x)
          For a random variable X whose values are distributed according to this distribution, this method returns P(X ≤ x).
 double IntegerDistribution.cumulativeProbability(int x0, int x1)
          For this distribution, X, this method returns P(x0 ≤ X ≤ x1).
 int IntegerDistribution.inverseCumulativeProbability(double p)
          For this distribution, X, this method returns the largest x such that P(X ≤ x) <= p.
 double AbstractIntegerDistribution.cumulativeProbability(double x)
          For a random variable X whose values are distributed according to this distribution, this method returns P(X ≤ x).
abstract  double AbstractIntegerDistribution.cumulativeProbability(int x)
          For a random variable X whose values are distributed according to this distribution, this method returns P(X ≤ x).
 double AbstractIntegerDistribution.cumulativeProbability(int x0, int x1)
          For a random variable X whose values are distributed according to this distribution, this method returns P(x0 ≤ X ≤ x1).
 int AbstractIntegerDistribution.inverseCumulativeProbability(double p)
          For a random variable X whose values are distributed according to this distribution, this method returns the largest x, such that P(X ≤ x) ≤ p.
 double ContinuousDistribution.inverseCumulativeProbability(double p)
          For this disbution, X, this method returns x such that P(X < x) = p.
 double Distribution.cumulativeProbability(double x)
          For a random variable X whose values are distributed according to this distribution, this method returns P(X ≤ x).
 double Distribution.cumulativeProbability(double x0, double x1)
          For a random variable X whose values are distributed according to this distribution, this method returns P(x0 ≤ X ≤ x1).
 double AbstractDistribution.cumulativeProbability(double x0, double x1)
          For a random variable X whose values are distributed according to this distribution, this method returns P(x0 ≤ X ≤ x1).
 double AbstractContinuousDistribution.inverseCumulativeProbability(double p)
          For this distribution, X, this method returns the critical point x, such that P(X < x) = p.
 

Uses of MathException in org.apache.commons.math.special
 

Methods in org.apache.commons.math.special that throw MathException
static double Gamma.regularizedGammaP(double a, double x)
          Returns the regularized gamma function P(a, x).
static double Gamma.regularizedGammaP(double a, double x, double epsilon, int maxIterations)
          Returns the regularized gamma function P(a, x).
static double Gamma.regularizedGammaQ(double a, double x)
          Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
static double Gamma.regularizedGammaQ(double a, double x, double epsilon, int maxIterations)
          Returns the regularized gamma function Q(a, x) = 1 - P(a, x).
static double Erf.erf(double x)
          Returns the error function erf(x).
static double Beta.regularizedBeta(double x, double a, double b)
          Returns the regularized beta function I(x, a, b).
static double Beta.regularizedBeta(double x, double a, double b, double epsilon)
          Returns the regularized beta function I(x, a, b).
static double Beta.regularizedBeta(double x, double a, double b, int maxIterations)
          Returns the regularized beta function I(x, a, b).
static double Beta.regularizedBeta(double x, double a, double b, double epsilon, int maxIterations)
          Returns the regularized beta function I(x, a, b).
 

Uses of MathException in org.apache.commons.math.stat.inference
 

Methods in org.apache.commons.math.stat.inference that throw MathException
 double TTestImpl.pairedT(double[] sample1, double[] sample2)
          Computes a paired, 2-sample t-statistic based on the data in the input arrays.
 double TTestImpl.pairedTTest(double[] sample1, double[] sample2)
          Returns the observed significance level, or p-value, associated with a paired, two-sample, two-tailed t-test based on the data in the input arrays.
 boolean TTestImpl.pairedTTest(double[] sample1, double[] sample2, double alpha)
          Performs a paired t-test evaluating the null hypothesis that the mean of the paired differences between sample1 and sample2 is 0 in favor of the two-sided alternative that the mean paired difference is not equal to 0, with significance level alpha.
 double TTestImpl.tTest(double mu, double[] sample)
          Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the input array with the constant mu.
 boolean TTestImpl.tTest(double mu, double[] sample, double alpha)
          Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which sample is drawn equals mu.
 double TTestImpl.tTest(double mu, StatisticalSummary sampleStats)
          Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the dataset described by sampleStats with the constant mu.
 boolean TTestImpl.tTest(double mu, StatisticalSummary sampleStats, double alpha)
          Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which the dataset described by stats is drawn equals mu.
 double TTestImpl.tTest(double[] sample1, double[] sample2)
          Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays.
 double TTestImpl.homoscedasticTTest(double[] sample1, double[] sample2)
          Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays, under the assumption that the two samples are drawn from subpopulations with equal variances.
 boolean TTestImpl.tTest(double[] sample1, double[] sample2, double alpha)
          Performs a two-sided t-test evaluating the null hypothesis that sample1 and sample2 are drawn from populations with the same mean, with significance level alpha.
 boolean TTestImpl.homoscedasticTTest(double[] sample1, double[] sample2, double alpha)
          Performs a two-sided t-test evaluating the null hypothesis that sample1 and sample2 are drawn from populations with the same mean, with significance level alpha, assuming that the subpopulation variances are equal.
 double TTestImpl.tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
          Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances.
 double TTestImpl.homoscedasticTTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
          Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances, under the hypothesis of equal subpopulation variances.
 boolean TTestImpl.tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2, double alpha)
          Performs a two-sided t-test evaluating the null hypothesis that sampleStats1 and sampleStats2 describe datasets drawn from populations with the same mean, with significance level alpha.
protected  double TTestImpl.tTest(double m, double mu, double v, double n)
          Computes p-value for 2-sided, 1-sample t-test.
protected  double TTestImpl.tTest(double m1, double m2, double v1, double v2, double n1, double n2)
          Computes p-value for 2-sided, 2-sample t-test.
protected  double TTestImpl.homoscedasticTTest(double m1, double m2, double v1, double v2, double n1, double n2)
          Computes p-value for 2-sided, 2-sample t-test, under the assumption of equal subpopulation variances.
 double TTest.pairedT(double[] sample1, double[] sample2)
          Computes a paired, 2-sample t-statistic based on the data in the input arrays.
 double TTest.pairedTTest(double[] sample1, double[] sample2)
          Returns the observed significance level, or p-value, associated with a paired, two-sample, two-tailed t-test based on the data in the input arrays.
 boolean TTest.pairedTTest(double[] sample1, double[] sample2, double alpha)
          Performs a paired t-test evaluating the null hypothesis that the mean of the paired differences between sample1 and sample2 is 0 in favor of the two-sided alternative that the mean paired difference is not equal to 0, with significance level alpha.
 double TTest.tTest(double mu, double[] sample)
          Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the input array with the constant mu.
 boolean TTest.tTest(double mu, double[] sample, double alpha)
          Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which sample is drawn equals mu.
 double TTest.tTest(double mu, StatisticalSummary sampleStats)
          Returns the observed significance level, or p-value, associated with a one-sample, two-tailed t-test comparing the mean of the dataset described by sampleStats with the constant mu.
 boolean TTest.tTest(double mu, StatisticalSummary sampleStats, double alpha)
          Performs a two-sided t-test evaluating the null hypothesis that the mean of the population from which the dataset described by stats is drawn equals mu.
 double TTest.tTest(double[] sample1, double[] sample2)
          Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays.
 double TTest.homoscedasticTTest(double[] sample1, double[] sample2)
          Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the input arrays, under the assumption that the two samples are drawn from subpopulations with equal variances.
 boolean TTest.tTest(double[] sample1, double[] sample2, double alpha)
          Performs a two-sided t-test evaluating the null hypothesis that sample1 and sample2 are drawn from populations with the same mean, with significance level alpha.
 boolean TTest.homoscedasticTTest(double[] sample1, double[] sample2, double alpha)
          Performs a two-sided t-test evaluating the null hypothesis that sample1 and sample2 are drawn from populations with the same mean, with significance level alpha, assuming that the subpopulation variances are equal.
 double TTest.tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
          Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances.
 double TTest.homoscedasticTTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2)
          Returns the observed significance level, or p-value, associated with a two-sample, two-tailed t-test comparing the means of the datasets described by two StatisticalSummary instances, under the hypothesis of equal subpopulation variances.
 boolean TTest.tTest(StatisticalSummary sampleStats1, StatisticalSummary sampleStats2, double alpha)
          Performs a two-sided t-test evaluating the null hypothesis that sampleStats1 and sampleStats2 describe datasets drawn from populations with the same mean, with significance level alpha.
 double ChiSquareTestImpl.chiSquareTest(double[] expected, long[] observed)
           
 boolean ChiSquareTestImpl.chiSquareTest(double[] expected, long[] observed, double alpha)
           
 double ChiSquareTestImpl.chiSquareTest(long[][] counts)
           
 boolean ChiSquareTestImpl.chiSquareTest(long[][] counts, double alpha)
           
 double ChiSquareTest.chiSquareTest(double[] expected, long[] observed)
          Returns the observed significance level, or p-value, associated with a Chi-square goodness of fit test comparing the observed frequency counts to those in the expected array.
 boolean ChiSquareTest.chiSquareTest(double[] expected, long[] observed, double alpha)
          Performs a Chi-square goodness of fit test evaluating the null hypothesis that the observed counts conform to the frequency distribution described by the expected counts, with significance level alpha.
 double ChiSquareTest.chiSquareTest(long[][] counts)
          Returns the observed significance level, or p-value, associated with a chi-square test of independence based on the input counts array, viewed as a two-way table.
 boolean ChiSquareTest.chiSquareTest(long[][] counts, double alpha)
          Performs a chi-square test of independence evaluating the null hypothesis that the classifications represented by the counts in the columns of the input 2-way table are independent of the rows, with significance level alpha.
 

Uses of MathException in org.apache.commons.math.stat.regression
 

Methods in org.apache.commons.math.stat.regression that throw MathException
 double SimpleRegression.getSlopeConfidenceInterval()
          Returns the half-width of a 95% confidence interval for the slope estimate.
 double SimpleRegression.getSlopeConfidenceInterval(double alpha)
          Returns the half-width of a (100-100*alpha)% confidence interval for the slope estimate.
 double SimpleRegression.getSignificance()
          Returns the significance level of the slope (equiv) correlation.
 

Uses of MathException in org.apache.commons.math.util
 

Methods in org.apache.commons.math.util that throw MathException
 double TransformerMap.transform(Object o)
          Attempts to transform the Object against the map of NumberTransformers.
 double NumberTransformer.transform(Object o)
          Implementing this interface provides a facility to transform from Object to Double.
 double DefaultTransformer.transform(Object o)
           
 double ContinuedFraction.evaluate(double x)
          Evaluates the continued fraction at the value x.
 double ContinuedFraction.evaluate(double x, double epsilon)
          Evaluates the continued fraction at the value x.
 double ContinuedFraction.evaluate(double x, int maxIterations)
          Evaluates the continued fraction at the value x.
 double ContinuedFraction.evaluate(double x, double epsilon, int maxIterations)
          Evaluates the continued fraction at the value x.
 



Copyright © 2003-2004 The Apache Software Foundation. All Rights Reserved.